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Solution  Take Laplace transform on both sides of the DE

\)

s2X(s) — sx(0) — x’(0) + X(s) = S where X = L(x)
$X(s) =25 — (=1) + X(s) = —
sc+ 1
(2 + DX(s) = ———+25—1

sc+ 1

¥ B Ky N 2s B 1

&) = Gyt eel e
_ \ . 28 ~ |
o= s 1((s2 + 1)2)(0 e 1(52 + 1)(0 -~ 1(52 + 1)@



Therefore,

x(f) = L‘l( )(t) +2cost—sint

(52 + 1)2



Therefore,

x(f) = L‘l( )(t) +2cost—sint

(52 + 1)2

) S 1
Note that = :
(52 + 1)32 s2+1 s2+1




Therefore,

.| -
x(t) = L ((s2 N 1)2)(0 +2cost—sint
) Ky 1
Note that = :
(52 + 1)32 s2+1 s2+1

= L(cost) - L(sin?)



Therefore,

.| -
x(t) = L ((s2 N 1)2)(0 +2cost—sint
) Ky 1
Note that = :
(52 + 1)32 s2+1 s2+1

= L(cost) - L(sint)

s
(52 + 1)?

Therefore L‘l( )(t) = CoSt*sint



Therefore,

.| -
x(t) = L ((s2 N 1)2)(0 +2cost—sint
) Ky 1
Note that = :
(52 + 1)32 s2+1 s2+1

= L(cost) - L(sint)

s
(52 + 1)?

Therefore &‘1( )(t) = COSt*sint

1
= f cos(t — 7)sintdr
0



Therefore,

.| -
x(t) = L ((s2 N 1)2)(0 +2cost—sint
) Ky 1
Note that = :
(52 + 1)32 s2+1 s2+1

= L(cost) - L(sint)

s
(52 + 1)?

Therefore L‘l( )(t) = CoSt*sint

1
= f cos(t — 7)sintdr
0

1
1
— f i(sin(r+t—r)+sin(T—t+T))dT
0



Therefore,

.| -
x(t) = L ((s2 N 1)2)(0 +2cost—sint
) Ky 1
Note that = :
(52 + 1)32 s2+1 s2+1

= L(cost) - L(sint)

\)

Therefore L‘l(( 17
S

)(t) = COSt*sInt
1
= f cos(t — 7)sintdr
0

1
1
— f i(sin(r+t—r)+sin(T—t+T))dT
0

1t°l‘
= —tsin
2



Remark Can use Laplace transform method to solve

e DE ay’ +by +cy=g(t)  g(t) “familiar function”



Remark Can use Laplace transform method to solve

e DE ay’ +by +cy=g(t)  g(t) “familiar function”

Take Laplace transform on both sides

a (L)) = 5y(0) =y (0)) + b (L)) = ¥(0)) + cLG)(s) = L(g)(s)



Remark Can use Laplace transform method to solve

e DE ay’ +by +cy=g(t)  g(t) “familiar function”

Take Laplace transform on both sides
a (L)) = 5y(0) =y (0)) + b (L)) = ¥(0)) + cLG)(s) = L(g)(s)

(as” + bs + OLG)(s) = ay(©0)s — (ay'(0) + by(©)) = L(g)(s)



Remark Can use Laplace transform method to solve

e DE ay’ +by +cy=g(t)  g(t) “familiar function”

Take Laplace transform on both sides
a (L)) = 5y(0) =y (0)) + b (L)) = ¥(0)) + cLG)(s) = L(g)(s)

(as” + bs + OLG)(s) = ay(©0)s — (ay'(0) + by(©)) = L(g)(s)

| aAs aB + bA L(g)(s)
Solvin L = +
ng O)(s) as? + bs + ¢ a52+bs+c+aS2+bS+C




Remark Can use Laplace transform method to solve

e DE ay’ +by +cy=g(t)  g(t) “familiar function”

Take Laplace transform on both sides
a(S2L)(s) = 5y(0) =y (0)) + b (sLG)(s) = ¥(0)) + cLOG)s) = L(g)(s)

(as” + bs + OLG)(s) = ay(©0)s — (ay'(0) + by(©)) = L(g)(s)

| aAs aB + bA L(g)(s)
Solvin L = + T
ving O)(s) as?+bs+c as’!+bs+c as?+bs+c

where A = y(0) and B = y’(0) are arbitrary.



Remark Can use Laplace transform method to solve

e DE ay’ +by +cy=g(t)  g(t) “familiar function”

Take Laplace transform on both sides
a (L)) = 5y(0) =y (0)) + b (L)) = ¥(0)) + cLG)(s) = L(g)(s)

(as” + bs + OLG)(s) = ay(©0)s — (ay'(0) + by(©)) = L(g)(s)

| aAs aB + bA L(g)(s)
Solvin L = + T
ving O)(s) as?+bs+c as’!+bs+c as?+bs+c

where A = y(0) and B = y’(0) are arbitrary.

e System IVP See lecture notes.



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<t<]1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

10



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<t<]1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

Usual meaning of solution ¢ : [0, 00) — R such that

10



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<t<]1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

Usual meaning of solution ¢ : [0, 00) — R such that

(1) (1) + ¢(t) = g(¢) for all t > 0;

10



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<t<]1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

Usual meaning of solution ¢ : [0, 00) — R such that

(1) (1) + ¢(t) = g(¢) for all t > 0;

(2)  ¢'(0)+¢0)=g0);  ¢(0) means ¢ (0)

10



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<t<]1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

Usual meaning of solution ¢ : [0, 00) — R such that
(1) @' (t) + o(t) = g(t) for all £ > 0;
(2)  ¢'(0)+¢(0) = g(0); ¢'(0) means ¢.(0)
(3) ¢0)=1

10



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<t<]1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

Usual meaning of solution ¢ : [0, 00) — R such that

(1) @' (©) + ¢(r) = g(¢) for all £ > 0;
(2)  ¢'(0) + ¢(0) = g(0); ¢’'(0) means ¢/, (0)
3) «0)=1

Remark The IVP has no solution in usual sense.



Second order linear (const coeff) DE with piecewise continuous forcing
functions

y+y=g(@), t>0, 1 ifo<r<l1

y(0) =1,

Example Solve
0 otherwise.

where g(1) = {

Usual meaning of solution ¢ : [0,00) — R such that
(1) (1) + ¢(t) = g(¢) for all t > 0;
(2)  ¢'(0)+¢(0) = g(0); ¢'(0) means ¢.(0)
(3) ¢0)=1

Remark The IVP has no solution in usual sense.

In fact, 71 ¢ : (0, 00) — R satisfying (1).
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Intermediate Value Theorem for Derived Functions

Let f : (a,b) — R be a differentiable function. Then the range of f’ is an
interval.

Proof of remark  Suppose ¢ : (0,00) — R satisfies

,
1 fO<t<l1,
@' (1) + (1) = 4
0 ifr>1.

Fix 5 € (0, 00)

Define f:(0,00) — R by f(t) = (1) + f o(u) du

)

By Fundamental Theorem of Calculus,

= +elt) VYit>0

Hence range of " = {0, 1}, contradicts IVT for derived function.
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"+ by =g(), t>0,
Consider first order IVP {y y=8
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Consider first order IVP {y y=8

y(0) = yo,

where g : [0, 0) — R Is piecewise continuous.

Meaning of solution ¢ : [0,00) — R such that
e e ([0,00)
o ©'(t)+ by(t) = g(tr) forall ¢t € [0, 00) at which g is continuous

e ¢(0) =yo
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"+ by =g(), t>0,
Consider first order IVP {y y=8

y(0) = yo,

where g : [0, 0) — R Is piecewise continuous.

Meaning of solution ¢ : [0,00) — R such that

e ¢ € ([0, )

o ©'(t)+ by(t) = g(tr) forall ¢t € [0, 00) at which g is continuous

e ¢(0) =yo

t
Remark The solutionis  ¢(f) = ™ ( f e o(u) du + y())
0
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0
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Fundamental Theorem of Calculus

Let f: [0, c0) — R be a piecewise continuous function.

Define F : [0,00) — R by F(t) = f f(u)du
0

Then Fis continuous and

F'(a) = f(a) foralla € [0,00) at which f is continuous.

Verify ¢ is solution Let t € [0, o) be such that g is continuous at t.

¢'(t) = e‘bf'e“g<t>+<—b>e-”o( f e g(u) du+yo)
0

g(t) — by(1)
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y(0) = yo,
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Consider second order IVP
y(0) = yo,

where g : [0, 0) — R is piecewise continuous.

ay” + by’ + cy = g(1),

y'(0) =y

t >0,
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Consider second order IVP
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t >0,
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Hence Ot =P () = h()
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Theorem B Consider the second order IVP {

where g : [0, 0) — R is piecewise continuous.

ay” + by" + cy = g(1),
y(0) =y, Y'(0) =y

t >0,

18



ay’ + by +cy=2(), t>0,
Theorem B Consider the second order IVP { Y Y y =8

y(0) =yo, Y(0) =y
where g : [0, 0) — R is piecewise continuous.

Suppose g is of exponential order, then the derivative of the solution to the IVP is
also of exponential order.
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. ay” +by’ +cy =g, t=0,
Theorem B Consider the second order IVP
¥(0) =yo, ¥(0)=x
where g : [0, 0) — R is piecewise continuous.
Suppose g is of exponential order, then the derivative of the solution to the IVP is
also of exponential order.

Proof Consider b* — 4ac > 0, witha = 1.
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(

_ sin ¢ fO<tr<2n
Example Findthe Laplace transform of g where g(¢) = <

ksint+cost ifr>2n

Note

o |g() <2e” forall t>0

Hence L(g)(s) exists for all s > 0. /
e gisdiscontinuous at r = 2z (cont. elsewhere) \/p 0 s
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21 00
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to the right by a distance c, y = u(c)f(t - ¢)

supplemented by the 0 function on [0, ¢). \ /\ /
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