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Applications of Laplace transform to IVP
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where g : [0,∞) −→ R is continuous.
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Second order IVP


ay′′ + by′ + cy = g(t), t ≥ 0,

y(0) = y0, y′(0) = y1

where g : [0,∞) −→ R is continuous.

Meaning of solution ϕ : [0,∞) −→ R such that

• aϕ′′(t) + bϕ′(t) + cϕ(t) = g(t) for all t > 0

• aϕ′′+(0) + bϕ′+(0) + cϕ(0) = g(0)
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Example Solve the IVP


x′′ + x = cos t,

x(0) = 2, x′(0) = −1.

Solution Take Laplace transform on both sides of the DE

s2X(s) − sx(0) − x′(0) + X(s) =
s

s2 + 1
where X = L(x)

s2X(s) − 2s − (−1) + X(s) =
s

s2 + 1

(s2 + 1)X(s) =
s

s2 + 1
+ 2s − 1

X(s) =
s

(s2 + 1)2 +
2s

s2 + 1
− 1

s2 + 1

x(t) = L−1
( s
(s2 + 1)2

)
(t) + L−1

( 2s
s2 + 1

)
(t) − L−1

( 1
s2 + 1

)
(t)
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x(t) = L−1
( s
(s2 + 1)2

)
(t) + 2 cos t − sin t
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Therefore,

x(t) = L−1
( s
(s2 + 1)2

)
(t) + 2 cos t − sin t

Note that
s

(s2 + 1)2 =
s

s2 + 1
· 1

s2 + 1

= L(cos t) · L(sin t)

Therefore L−1
( s
(s2 + 1)2

)
(t) = cos t ∗ sin t
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Therefore,

x(t) = L−1
( s
(s2 + 1)2

)
(t) + 2 cos t − sin t

Note that
s

(s2 + 1)2 =
s

s2 + 1
· 1

s2 + 1

= L(cos t) · L(sin t)

Therefore L−1
( s
(s2 + 1)2

)
(t) = cos t ∗ sin t

=

∫ t

0
cos(t − τ) sin τ dτ
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Therefore,

x(t) = L−1
( s
(s2 + 1)2

)
(t) + 2 cos t − sin t

Note that
s

(s2 + 1)2 =
s

s2 + 1
· 1

s2 + 1

= L(cos t) · L(sin t)

Therefore L−1
( s
(s2 + 1)2

)
(t) = cos t ∗ sin t

=

∫ t

0
cos(t − τ) sin τ dτ

=

∫ t

0

1
2

(
sin(τ + t − τ) + sin(τ − t + τ)

)
dτ
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Therefore,

x(t) = L−1
( s
(s2 + 1)2

)
(t) + 2 cos t − sin t

Note that
s

(s2 + 1)2 =
s

s2 + 1
· 1

s2 + 1

= L(cos t) · L(sin t)

Therefore L−1
( s
(s2 + 1)2

)
(t) = cos t ∗ sin t

=

∫ t

0
cos(t − τ) sin τ dτ

=

∫ t

0

1
2

(
sin(τ + t − τ) + sin(τ − t + τ)

)
dτ

...

=
1
2

t sin t
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• DE ay′′ + by′ + cy = g(t) g(t) “familiar function”

Take Laplace transform on both sides

a
(
s2L(y)(s) − sy(0) − y′(0)

)
+ b

(
sL(y)(s) − y(0)

)
+ cL(y)(s) = L(g)(s)

(as2 + bs + c)L(y)(s) − ay(0)s −
(
ay′(0) + by(0)

)
= L(g)(s)

Solving L(y)(s) =
aAs

as2 + bs + c
+

aB + bA
as2 + bs + c

+
L(g)(s)

as2 + bs + c

where A = y(0) and B = y′(0) are arbitrary.
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Remark Can use Laplace transform method to solve

• DE ay′′ + by′ + cy = g(t) g(t) “familiar function”

Take Laplace transform on both sides

a
(
s2L(y)(s) − sy(0) − y′(0)

)
+ b

(
sL(y)(s) − y(0)

)
+ cL(y)(s) = L(g)(s)

(as2 + bs + c)L(y)(s) − ay(0)s −
(
ay′(0) + by(0)

)
= L(g)(s)

Solving L(y)(s) =
aAs

as2 + bs + c
+

aB + bA
as2 + bs + c

+
L(g)(s)

as2 + bs + c

where A = y(0) and B = y′(0) are arbitrary.

• System IVP See lecture notes.
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0 otherwise.
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Second order linear (const coeff) DE with piecewise continuous forcing

functions

Example Solve


y′ + y = g(t), t ≥ 0,

y(0) = 1,
where g(t) =


1 if 0 ≤ t < 1

0 otherwise.

Usual meaning of solution ϕ : [0,∞) −→ R such that

(1) ϕ′(t) + ϕ(t) = g(t) for all t > 0;

(2) ϕ′(0) + ϕ(0) = g(0); ϕ′(0) means ϕ′+(0)

(3) ϕ(0) = 1

Remark The IVP has no solution in usual sense.

In fact, @ ϕ : (0,∞) −→ R satisfying (1).
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Intermediate Value Theorem for Derived Functions

Let f : (a, b) −→ R be a differentiable function. Then the range of f ′ is an

interval.

Proof of remark Suppose ϕ : (0,∞) −→ R satisfies

ϕ′(t) + ϕ(t) =


1 if 0 < t < 1,

0 if t ≥ 1.

Fix t0 ∈ (0,∞)

Define f : (0,∞) −→ R by f (t) = ϕ(t) +

∫ t

t0
ϕ(u) du

By Fundamental Theorem of Calculus,

f ′(t) = ϕ′(t) + ϕ(t) ∀ t > 0

Hence range of f ′ = {0, 1}, contradicts IVT for derived function.
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Consider first order IVP


y′ + by = g(t), t ≥ 0,

y(0) = y0,

where g : [0,∞) −→ R is piecewise continuous.

Meaning of solution ϕ : [0,∞) −→ R such that

• ϕ ∈ C[0,∞)

• ϕ′(t) + bϕ(t) = g(t) for all t ∈ [0,∞) at which g is continuous

• ϕ(0) = y0

Remark The solution is ϕ(t) = e−bt
(∫ t

0
ebug(u) du + y0

)
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Fundamental Theorem of Calculus

Let f : [0,∞) −→ R be a piecewise continuous function.

Define F : [0,∞) −→ R by F(t) =

∫ t

0
f (u) du

Then F is continuous and

F′(a) = f (a) for all a ∈ [0,∞) at which f is continuous.

Verify ϕ is solution Let t ∈ [0,∞) be such that g is continuous at t.

ϕ′(t) = e−bt · ebtg(t) + (−b)e−bt ·
(∫ t

0
ebug(u) du + y0

)

= g(t) − bϕ(t)
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WLOG, may assume a + b > 0

For all t ≥ 0, |ϕ(t)| ≤ e−bt
(∫ t

0
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)

= e−bt


K
(
e(a+b)t − 1

)

a + b
+ |y0|



≤ K
a + b

eat + |y0|e−bt

≤
( K
a + b

+ |y0|
)

ect where c = max{a,−b}
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y′ − βy = h(t), t ≥ 0,
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By Theorem A, ϕ is of exponential order.

Hence, ϕ′ = βϕ + h is of exponential order.
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Note

• |g(t)| ≤ 2e0t for all t ≥ 0

Hence L(g)(s) exists for all s > 0.

• g is discontinuous at t = 2π (cont. elsewhere)

• Value of g at t = 2π doesn’t matter

2 p 4 p 6 p

-1

1

Method 1 Use definition L(g)(s) =

∫ ∞

0
e−st f (t) dt

=

∫ 2π

0
e−st sin t dt +

∫ ∞

2π
e−st(sin t + cos t) dt
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