Second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

where $g:[0,\infty)\longrightarrow\mathbb{R}$ is continuous.

Second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

where $g:[0,\infty)\longrightarrow \mathbb{R}$ is continuous.

Meaning of solution $\varphi : [0, \infty) \longrightarrow \mathbb{R}$ such that

Second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

where $g:[0,\infty)\longrightarrow\mathbb{R}$ is continuous.

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

•
$$a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$$
 for all $t > 0$

Second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

where $g:[0,\infty)\longrightarrow\mathbb{R}$ is continuous.

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all t > 0
- $a\varphi''_{+}(0) + b\varphi'_{+}(0) + c\varphi(0) = g(0)$

Second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

where $g:[0,\infty)\longrightarrow\mathbb{R}$ is continuous.

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all t > 0
- $a\varphi''_{+}(0) + b\varphi'_{+}(0) + c\varphi(0) = g(0)$
- $\varphi(0) = y_0$ and $\varphi'_{+}(0) = y_1$

Second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

where $g:[0,\infty)\longrightarrow\mathbb{R}$ is continuous.

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all t > 0
- $a\varphi''_{+}(0) + b\varphi'_{+}(0) + c\varphi(0) = g(0)$
- $\varphi(0) = y_0$ and $\varphi'_{+}(0) = y_1$

for simplicity, write $\varphi'(0)$ etc.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$. Then for s > a, $\mathcal{L}(f)(s)$ exists and

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$.

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$.

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} df(t)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$.

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} df(t)$$
$$= \lim_{R \to \infty} \left(\left[e^{-st} f(t) \right]_0^R - \int_0^R -s e^{-st} f(t) dt \right)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$. Then for s > a, $\mathcal{L}(f)(s)$ exists and

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} df(t)$$

$$= \lim_{R \to \infty} \left(\left[e^{-st} f(t) \right]_0^R - \int_0^R -s e^{-st} f(t) dt \right)$$

$$= \lim_{R \to \infty} e^{-sR} f(R) - f(0) + s \int_0^\infty e^{-st} f(t) dt$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$.

Then for s > a, $\mathcal{L}(f)(s)$ exists and

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} df(t)$$

$$= \lim_{R \to \infty} \left(\left[e^{-st} f(t) \right]_0^R - \int_0^R -s e^{-st} f(t) dt \right)$$

$$= \lim_{R \to \infty} e^{-sR} f(R) - f(0) + s \int_0^\infty e^{-st} f(t) dt$$

because $e^{-sR}|f(R)| \le e^{-sR}Ke^{aR}$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$.

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} df(t)$$

$$= \lim_{R \to \infty} \left(\left[e^{-st} f(t) \right]_0^R - \int_0^R -s e^{-st} f(t) dt \right)$$

$$= \lim_{R \to \infty} e^{-sR} f(R) - f(0) + s \int_0^\infty e^{-st} f(t) dt$$

because
$$e^{-sR}|f(R)| \le e^{-sR}Ke^{aR}$$

= $Ke^{-(s-a)R} \to 0$ as $R \to \infty$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ be such that $|f(t)| \leq Ke^{at}$ for all $t \geq 0$. Then for s > a, $\mathcal{L}(f)(s)$ exists and

$$\int_0^\infty e^{-st} f'(t) dt = \lim_{R \to \infty} \int_0^R e^{-st} df(t)$$

$$= \lim_{R \to \infty} \left(\left[e^{-st} f(t) \right]_0^R - \int_0^R -s e^{-st} f(t) dt \right)$$

$$= \lim_{R \to \infty} e^{-sR} f(R) - f(0) + s \int_0^\infty e^{-st} f(t) dt$$

$$= -f(0) + s \mathcal{L}(f)(s)$$

because
$$e^{-sR}|f(R)| \le e^{-sR}Ke^{aR}$$

= $Ke^{-(s-a)R} \to 0$ as $R \to \infty$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|f'(u)| \leq Ke^{au}$ for all $u \geq 0$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|f'(u)| \le Ke^{au}$ for all $u \ge 0$ WLOG, may assume a > 0

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|f'(u)| \leq Ke^{au}$ for all $u \geq 0$

For all
$$t \ge 0$$
,
$$f(t) = \int_0^t f'(u) du + f(0)$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|f'(u)| \leq Ke^{au}$ for all $u \geq 0$

For all
$$t \ge 0$$
,
$$f(t) = \int_0^t f'(u) du + f(0)$$

$$|f(t)| \leq \int_0^t K e^{au} du + |f(0)|$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|f'(u)| \leq Ke^{au}$ for all $u \geq 0$

For all
$$t \ge 0$$
,
$$f(t) = \int_0^t f'(u) du + f(0)$$
$$|f(t)| \le \int_0^t Ke^{au} du + |f(0)|$$
$$= \frac{K(e^{at} - 1)}{a} + |f(0)|$$

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|f'(u)| \leq Ke^{au}$ for all $u \geq 0$

For all
$$t \ge 0$$
,
$$|f(t)| = \int_0^t f'(u) du + f(0)$$

$$|f(t)| \le \int_0^t Ke^{au} du + |f(0)|$$

$$= \frac{K(e^{at} - 1)}{a} + |f(0)|$$

$$\le \frac{K}{a}e^{at} + |f(0)|e^{at}$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f')(s) - f'(0)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f')(s) - f'(0)$$

By above lemma, f is of exponential order.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f')(s) - f'(0)$$

By above lemma, f is of exponential order.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f')(s) - f'(0)$$

By above lemma, f is of exponential order.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f')(s) - f'(0)$$

By above lemma, f is of exponential order.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

Hence
$$\mathcal{L}(f'')(s) = s\left(s\mathcal{L}(f)(s) - f(0)\right) - f'(0)$$

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$

$$\mathcal{L}(f'')(s) = s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Proof By Theorem 1, for large enough s, $\mathcal{L}(f')(s)$ and $\mathcal{L}(f'')(s)$ exist and

$$\mathcal{L}(f'')(s) = s\mathcal{L}(f')(s) - f'(0)$$

By above lemma, f is of exponential order.

$$\mathcal{L}(f')(s) = s\mathcal{L}(f)(s) - f(0)$$
Hence
$$\mathcal{L}(f'')(s) = s\left(s\mathcal{L}(f)(s) - f(0)\right) - f'(0)$$

$$= s^2\mathcal{L}(f)(s) - sf(0) - f'(0)$$

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

Solution The solution $f:(-\infty,\infty)\longrightarrow \mathbb{R}$ is in the form

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

To find A, B, C, D,

can apply Theorem 2 ::

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

To find A, B, C, D,

can apply Theorem 2 $:: f': [0, \infty) \longrightarrow \mathbb{R}$ is of exponential order and

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

To find A, B, C, D,

can apply Theorem 2 $:: f': [0, \infty) \longrightarrow \mathbb{R}$ is of exponential order and $f'': [0, \infty) \longrightarrow \mathbb{R}$ continuous

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

To find A, B, C, D,

can apply Theorem 2 $:: f': [0, \infty) \longrightarrow \mathbb{R}$ is of exponential order and $f'': [0, \infty) \longrightarrow \mathbb{R}$ continuous

From the DE $f''(t) + f(t) = \sin 2t$, $t \ge 0$

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

To find *A*, *B*, *C*, *D*,

can apply Theorem 2 $:: f': [0, \infty) \longrightarrow \mathbb{R}$ is of exponential order and $f'': [0, \infty) \longrightarrow \mathbb{R}$ continuous

From the DE $f''(t) + f(t) = \sin 2t$, $t \ge 0$

Take Laplace transform $\mathcal{L}(f'')(s) + \mathcal{L}(f)(s) = \frac{2}{s^2 + 4}$ for large enough s

Example Solve the IVP
$$\begin{cases} x'' + x = \sin 2t, \\ x(0) = 0, \quad x'(0) = 1. \end{cases}$$

$$f(t) = A\cos t + B\sin t + C\cos 2t + D\sin 2t$$

To find *A*, *B*, *C*, *D*,

can apply Theorem 2 $:: f': [0, \infty) \longrightarrow \mathbb{R}$ is of exponential order and $f'': [0, \infty) \longrightarrow \mathbb{R}$ continuous

From the DE $f''(t) + f(t) = \sin 2t$, $t \ge 0$

Take Laplace transform $\mathcal{L}(f'')(s) + \mathcal{L}(f)(s) = \frac{2}{s^2 + 4}$ for large enough s

By Theorem 2, $s^2 \mathcal{L}(f)(s) - sf(0) - f'(0) + \mathcal{L}(f)(s) = \frac{2}{s^2 + 4}$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4}$$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4} = \frac{s^{2} + 6}{s^{2} + 4}$$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4} = \frac{s^{2} + 6}{s^{2} + 4}$$

$$\mathcal{L}(f)(s) = \frac{s^{2} + 6}{(s^{2} + 1)(s^{2} + 4)}$$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4} = \frac{s^{2} + 6}{s^{2} + 4}$$

$$\mathcal{L}(f)(s) = \frac{s^{2} + 6}{(s^{2} + 1)(s^{2} + 4)} = \frac{As + B}{s^{2} + 1} + \frac{Cs + D}{s^{2} + 4}$$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4} = \frac{s^{2} + 6}{s^{2} + 4}$$

$$\mathcal{L}(f)(s) = \frac{s^{2} + 6}{(s^{2} + 1)(s^{2} + 4)} = \frac{As + B}{s^{2} + 1} + \frac{Cs + D}{s^{2} + 4}$$

$$= \frac{5}{3(s^{2} + 1)} - \frac{2}{3(s^{2} + 4)}$$

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4} = \frac{s^{2} + 6}{s^{2} + 4}$$

$$\mathcal{L}(f)(s) = \frac{s^{2} + 6}{(s^{2} + 1)(s^{2} + 4)} = \frac{As + B}{s^{2} + 1} + \frac{Cs + D}{s^{2} + 4}$$

$$= \frac{5}{3(s^{2} + 1)} - \frac{2}{3(s^{2} + 4)}$$

Inverse Laplace transform $f(t) = \frac{5}{3} \sin t - \frac{1}{3} \sin 2t$ for $t \ge 0$.

$$s^{2}\mathcal{L}(f)(s) - s \cdot 0 - 1 + \mathcal{L}(f)(s) = \frac{2}{s^{2} + 4}$$

$$(s^{2} + 1)\mathcal{L}(f)(s) = 1 + \frac{2}{s^{2} + 4} = \frac{s^{2} + 6}{s^{2} + 4}$$

$$\mathcal{L}(f)(s) = \frac{s^{2} + 6}{(s^{2} + 1)(s^{2} + 4)} = \frac{As + B}{s^{2} + 1} + \frac{Cs + D}{s^{2} + 4}$$

$$= \frac{5}{3(s^{2} + 1)} - \frac{2}{3(s^{2} + 4)}$$

Inverse Laplace transform $f(t) = \frac{5}{3} \sin t - \frac{1}{3} \sin 2t$ for $t \ge 0$.

Therefore, $f(t) = \frac{5}{3} \sin t - \frac{1}{3} \sin 2t$ for all $t \in \mathbb{R}$.

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

$$s^{2}X(s) - sx(0) - x'(0) + X(s) = \frac{s}{s^{2} + 1}$$
 where $X = \mathcal{L}(x)$

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

$$s^{2}X(s) - sx(0) - x'(0) + X(s) = \frac{s}{s^{2} + 1}$$
 where $X = \mathcal{L}(x)$
$$s^{2}X(s) - 2s - (-1) + X(s) = \frac{s}{s^{2} + 1}$$

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

$$s^{2}X(s) - sx(0) - x'(0) + X(s) = \frac{s}{s^{2} + 1}$$
 where $X = \mathcal{L}(x)$
$$s^{2}X(s) - 2s - (-1) + X(s) = \frac{s}{s^{2} + 1}$$
$$(s^{2} + 1)X(s) = \frac{s}{s^{2} + 1} + 2s - 1$$

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

$$s^{2}X(s) - sx(0) - x'(0) + X(s) = \frac{s}{s^{2} + 1} \quad \text{where } X = \mathcal{L}(x)$$

$$s^{2}X(s) - 2s - (-1) + X(s) = \frac{s}{s^{2} + 1}$$

$$(s^{2} + 1)X(s) = \frac{s}{s^{2} + 1} + 2s - 1$$

$$X(s) = \frac{s}{(s^{2} + 1)^{2}} + \frac{2s}{s^{2} + 1} - \frac{1}{s^{2} + 1}$$

Example Solve the IVP
$$\begin{cases} x'' + x = \cos t, \\ x(0) = 2, \quad x'(0) = -1. \end{cases}$$

$$s^{2}X(s) - sx(0) - x'(0) + X(s) = \frac{s}{s^{2} + 1} \qquad \text{where } X = \mathcal{L}(x)$$

$$s^{2}X(s) - 2s - (-1) + X(s) = \frac{s}{s^{2} + 1}$$

$$(s^{2} + 1)X(s) = \frac{s}{s^{2} + 1} + 2s - 1$$

$$X(s) = \frac{s}{(s^{2} + 1)^{2}} + \frac{2s}{s^{2} + 1} - \frac{1}{s^{2} + 1}$$

$$x(t) = \mathcal{L}^{-1}\left(\frac{s}{(s^{2} + 1)^{2}}\right)(t) + \mathcal{L}^{-1}\left(\frac{2s}{s^{2} + 1}\right)(t) - \mathcal{L}^{-1}\left(\frac{1}{s^{2} + 1}\right)(t)$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

Note that
$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

Note that
$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$
$$= \mathcal{L}(\cos t) \cdot \mathcal{L}(\sin t)$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

Note that
$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$
$$= \mathcal{L}(\cos t) \cdot \mathcal{L}(\sin t)$$

Therefore
$$\mathcal{L}^{-1}\left(\frac{s}{(s^2+1)^2}\right)(t) = \cos t * \sin t$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

Note that
$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$
$$= \mathcal{L}(\cos t) \cdot \mathcal{L}(\sin t)$$

Therefore
$$\mathcal{L}^{-1}\left(\frac{s}{(s^2+1)^2}\right)(t) = \cos t * \sin t$$

$$= \int_0^t \cos(t-\tau) \sin \tau \,d\tau$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

Note that
$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$
$$= \mathcal{L}(\cos t) \cdot \mathcal{L}(\sin t)$$

Therefore
$$\mathcal{L}^{-1}\left(\frac{s}{(s^2+1)^2}\right)(t) = \cos t * \sin t$$

$$= \int_0^t \cos(t-\tau) \sin \tau \,d\tau$$

$$= \int_0^t \frac{1}{2} \left(\sin(\tau+t-\tau) + \sin(\tau-t+\tau)\right) d\tau$$

$$x(t) = \mathcal{L}^{-1} \left(\frac{s}{(s^2 + 1)^2} \right) (t) + 2\cos t - \sin t$$

Note that
$$\frac{s}{(s^2+1)^2} = \frac{s}{s^2+1} \cdot \frac{1}{s^2+1}$$
$$= \mathcal{L}(\cos t) \cdot \mathcal{L}(\sin t)$$

Therefore
$$\mathcal{L}^{-1}\left(\frac{s}{(s^2+1)^2}\right)(t) = \cos t * \sin t$$

$$= \int_0^t \cos(t-\tau) \sin \tau \, d\tau$$

$$= \int_0^t \frac{1}{2} \left(\sin(\tau+t-\tau) + \sin(\tau-t+\tau)\right) d\tau$$

$$\vdots$$

$$= \frac{1}{2}t \sin t$$

• DE ay'' + by' + cy = g(t) g(t) "familiar function"

• DE ay'' + by' + cy = g(t) g(t) "familiar function"

Take Laplace transform on both sides

$$a\left(s^{2}\mathcal{L}(y)(s) - sy(0) - y'(0)\right) + b\left(s\mathcal{L}(y)(s) - y(0)\right) + c\mathcal{L}(y)(s) = \mathcal{L}(g)(s)$$

• DE ay'' + by' + cy = g(t) g(t) "familiar function"

Take Laplace transform on both sides

$$a\left(s^{2}\mathcal{L}(y)(s) - sy(0) - y'(0)\right) + b\left(s\mathcal{L}(y)(s) - y(0)\right) + c\mathcal{L}(y)(s) = \mathcal{L}(g)(s)$$

$$(as^{2} + bs + c)\mathcal{L}(y)(s) - ay(0)s - \left(ay'(0) + by(0)\right) = \mathcal{L}(g)(s)$$

• DE ay'' + by' + cy = g(t) g(t) "familiar function"

Take Laplace transform on both sides

$$a\left(s^{2}\mathcal{L}(y)(s) - sy(0) - y'(0)\right) + b\left(s\mathcal{L}(y)(s) - y(0)\right) + c\mathcal{L}(y)(s) = \mathcal{L}(g)(s)$$

$$(as^{2} + bs + c)\mathcal{L}(y)(s) - ay(0)s - \left(ay'(0) + by(0)\right) = \mathcal{L}(g)(s)$$
Solving
$$\mathcal{L}(y)(s) = \frac{aAs}{as^{2} + bs + c} + \frac{aB + bA}{as^{2} + bs + c} + \frac{\mathcal{L}(g)(s)}{as^{2} + bs + c}$$

• DE ay'' + by' + cy = g(t) g(t) "familiar function"

Take Laplace transform on both sides

$$a\left(s^{2}\mathcal{L}(y)(s) - sy(0) - y'(0)\right) + b\left(s\mathcal{L}(y)(s) - y(0)\right) + c\mathcal{L}(y)(s) = \mathcal{L}(g)(s)$$

$$(as^{2} + bs + c)\mathcal{L}(y)(s) - ay(0)s - \left(ay'(0) + by(0)\right) = \mathcal{L}(g)(s)$$

Solving
$$\mathcal{L}(y)(s) = \frac{aAs}{as^2 + bs + c} + \frac{aB + bA}{as^2 + bs + c} + \frac{\mathcal{L}(g)(s)}{as^2 + bs + c}$$

where A = y(0) and B = y'(0) are arbitrary.

• DE ay'' + by' + cy = g(t) g(t) "familiar function"

Take Laplace transform on both sides

$$a\left(s^{2}\mathcal{L}(y)(s) - sy(0) - y'(0)\right) + b\left(s\mathcal{L}(y)(s) - y(0)\right) + c\mathcal{L}(y)(s) = \mathcal{L}(g)(s)$$

$$(as^{2} + bs + c)\mathcal{L}(y)(s) - ay(0)s - \left(ay'(0) + by(0)\right) = \mathcal{L}(g)(s)$$

Solving
$$\mathcal{L}(y)(s) = \frac{aAs}{as^2 + bs + c} + \frac{aB + bA}{as^2 + bs + c} + \frac{\mathcal{L}(g)(s)}{as^2 + bs + c}$$

where A = y(0) and B = y'(0) are arbitrary.

System IVP See lecture notes.

Second order linear (const coeff) DE with piecewise continuous forcing functions

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Second order linear (const coeff) DE with piecewise continuous forcing functions

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Usual meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Usual meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

(1)
$$\varphi'(t) + \varphi(t) = g(t)$$
 for all $t > 0$;

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Usual meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

(1)
$$\varphi'(t) + \varphi(t) = g(t)$$
 for all $t > 0$;

(2)
$$\varphi'(0) + \varphi(0) = g(0);$$
 $\varphi'(0)$ means $\varphi'_{+}(0)$

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Usual meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

(1)
$$\varphi'(t) + \varphi(t) = g(t)$$
 for all $t > 0$;

(2)
$$\varphi'(0) + \varphi(0) = g(0);$$
 $\varphi'(0)$ means $\varphi'_{+}(0)$

$$(3) \quad \varphi(0) = 1$$

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Usual meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

(1)
$$\varphi'(t) + \varphi(t) = g(t)$$
 for all $t > 0$;

(2)
$$\varphi'(0) + \varphi(0) = g(0);$$
 $\varphi'(0)$ means $\varphi'_{+}(0)$

(3)
$$\varphi(0) = 1$$

Remark The IVP has no solution in usual sense.

Example Solve
$$\begin{cases} y' + y = g(t), & t \ge 0, \\ y(0) = 1, \end{cases} \text{ where } g(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Usual meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

(1)
$$\varphi'(t) + \varphi(t) = g(t)$$
 for all $t > 0$;

(2)
$$\varphi'(0) + \varphi(0) = g(0);$$
 $\varphi'(0)$ means $\varphi'_{+}(0)$

$$(3) \quad \varphi(0) = 1$$

Remark The IVP has no solution in *usual sense*.

In fact, $\not\exists \varphi : (0, \infty) \longrightarrow \mathbb{R}$ satisfying (1).

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Proof of remark Suppose $\varphi:(0,\infty)\longrightarrow \mathbb{R}$ satisfies

$$\varphi'(t) + \varphi(t) = \begin{cases} 1 & \text{if } 0 < t < 1, \\ 0 & \text{if } t \ge 1. \end{cases}$$

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Proof of remark Suppose $\varphi:(0,\infty)\longrightarrow \mathbb{R}$ satisfies

$$\varphi'(t) + \varphi(t) = \begin{cases} 1 & \text{if } 0 < t < 1, \\ 0 & \text{if } t \ge 1. \end{cases}$$

Fix $t_0 \in (0, \infty)$

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Proof of remark Suppose $\varphi:(0,\infty)\longrightarrow \mathbb{R}$ satisfies

$$\varphi'(t) + \varphi(t) = \begin{cases} 1 & \text{if } 0 < t < 1, \\ 0 & \text{if } t \ge 1. \end{cases}$$

Fix $t_0 \in (0, \infty)$

Define
$$f:(0,\infty)\longrightarrow \mathbb{R}$$
 by $f(t)=\varphi(t)+\int_{t_0}^t \varphi(u)\,\mathrm{d}u$

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Proof of remark Suppose $\varphi:(0,\infty)\longrightarrow \mathbb{R}$ satisfies

$$\varphi'(t) + \varphi(t) = \begin{cases} 1 & \text{if } 0 < t < 1, \\ 0 & \text{if } t \ge 1. \end{cases}$$

Fix $t_0 \in (0, \infty)$

Define
$$f:(0,\infty)\longrightarrow \mathbb{R}$$
 by $f(t)=\varphi(t)+\int_{t_0}^t \varphi(u)\,\mathrm{d}u$

By Fundamental Theorem of Calculus,

$$f'(t) = \varphi'(t) + \varphi(t) \qquad \forall \ t > 0$$

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Proof of remark Suppose $\varphi:(0,\infty)\longrightarrow \mathbb{R}$ satisfies

$$\varphi'(t) + \varphi(t) = \begin{cases} 1 & \text{if } 0 < t < 1, \\ 0 & \text{if } t \ge 1. \end{cases}$$

Fix $t_0 \in (0, \infty)$

Define
$$f:(0,\infty)\longrightarrow \mathbb{R}$$
 by $f(t)=\varphi(t)+\int_{t_0}^t \varphi(u)\,\mathrm{d}u$

By Fundamental Theorem of Calculus,

$$f'(t) = \varphi'(t) + \varphi(t) \qquad \forall \ t > 0$$

Hence range of $f' = \{0, 1\},\$

Let $f:(a,b) \longrightarrow \mathbb{R}$ be a differentiable function. Then the range of f' is an interval.

Proof of remark Suppose $\varphi:(0,\infty)\longrightarrow \mathbb{R}$ satisfies

$$\varphi'(t) + \varphi(t) = \begin{cases} 1 & \text{if } 0 < t < 1, \\ 0 & \text{if } t \ge 1. \end{cases}$$

Fix $t_0 \in (0, \infty)$

Define
$$f:(0,\infty)\longrightarrow \mathbb{R}$$
 by $f(t)=\varphi(t)+\int_{t_0}^t \varphi(u)\,\mathrm{d}u$

By Fundamental Theorem of Calculus,

$$f'(t) = \varphi'(t) + \varphi(t) \qquad \forall \ t > 0$$

Hence range of $f' = \{0, 1\}$, contradicts IVT for derived function.

Consider first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Consider first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

Consider first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

• $\varphi \in C[0, \infty)$

Consider first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C[0, \infty)$
- $\varphi'(t) + b\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous

Consider first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C[0, \infty)$
- $\varphi'(t) + b\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\varphi(0) = y_0$

Consider first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C[0,\infty)$
- $\varphi'(t) + b\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\varphi(0) = y_0$

Remark The solution is $\varphi(t) = e^{-bt} \left(\int_0^t e^{bu} g(u) du + y_0 \right)$

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F:[0,\infty)\longrightarrow \mathbb{R}$$
 by $F(t)=\int_0^t f(u)\,\mathrm{d}u$

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F:[0,\infty)\longrightarrow \mathbb{R}$$
 by $F(t)=\int_0^t f(u)\,\mathrm{d}u$

Then F is continuous and

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F: [0, \infty) \longrightarrow \mathbb{R}$$
 by $F(t) = \int_0^t f(u) du$

Then *F* is continuous and

F'(a) = f(a) for all $a \in [0, \infty)$ at which f is continuous.

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F: [0, \infty) \longrightarrow \mathbb{R}$$
 by $F(t) = \int_0^t f(u) du$

Then *F* is continuous and

F'(a) = f(a) for all $a \in [0, \infty)$ at which f is continuous.

Verify φ is solution

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F: [0, \infty) \longrightarrow \mathbb{R}$$
 by $F(t) = \int_0^t f(u) du$

Then *F* is continuous and

F'(a) = f(a) for all $a \in [0, \infty)$ at which f is continuous.

Verify φ *is solution* Let $t \in [0, \infty)$ be such that g is continuous at t.

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F:[0,\infty)\longrightarrow \mathbb{R}$$
 by $F(t)=\int_0^t f(u)\,\mathrm{d}u$

Then *F* is continuous and

F'(a) = f(a) for all $a \in [0, \infty)$ at which f is continuous.

Verify φ *is solution* Let $t \in [0, \infty)$ be such that g is continuous at t.

$$\varphi'(t) = e^{-bt} \cdot e^{bt} g(t) + (-b)e^{-bt} \cdot \left(\int_0^t e^{bu} g(u) du + y_0 \right)$$

Let $f:[0,\infty)\longrightarrow \mathbb{R}$ be a piecewise continuous function.

Define
$$F:[0,\infty)\longrightarrow \mathbb{R}$$
 by $F(t)=\int_0^t f(u)\,\mathrm{d}u$

Then *F* is continuous and

F'(a) = f(a) for all $a \in [0, \infty)$ at which f is continuous.

Verify φ *is solution* Let $t \in [0, \infty)$ be such that g is continuous at t.

$$\varphi'(t) = e^{-bt} \cdot e^{bt} g(t) + (-b)e^{-bt} \cdot \left(\int_0^t e^{bu} g(u) du + y_0 \right)$$
$$= g(t) - b\varphi(t)$$

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

For all
$$t \ge 0$$
, $|\varphi(t)| \le e^{-bt} \left(\int_0^t e^{bu} K e^{au} du + |y_0| \right)$

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

For all
$$t \ge 0$$
, $|\varphi(t)| \le e^{-bt} \left(\int_0^t e^{bu} K e^{au} du + |y_0| \right)$
$$= e^{-bt} \left(\frac{K \left(e^{(a+b)t} - 1 \right)}{a+b} + |y_0| \right)$$

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

For all
$$t \ge 0$$
, $|\varphi(t)| \le e^{-bt} \left(\int_0^t e^{bu} K e^{au} du + |y_0| \right)$

$$= e^{-bt} \left(\frac{K \left(e^{(a+b)t} - 1 \right)}{a+b} + |y_0| \right)$$

$$\le \frac{K}{a+b} e^{at} + |y_0| e^{-bt}$$

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

For all
$$t \ge 0$$
, $|\varphi(t)| \le e^{-bt} \left(\int_0^t e^{bu} K e^{au} du + |y_0| \right)$

$$= e^{-bt} \left(\frac{K \left(e^{(a+b)t} - 1 \right)}{a+b} + |y_0| \right)$$

$$\le \frac{K}{a+b} e^{at} + |y_0| e^{-bt}$$

$$\le \left(\frac{K}{a+b} + |y_0| \right) e^{ct}$$

Theorem A Consider the first order IVP
$$\begin{cases} y' + by = g(t), & t \ge 0, \\ y(0) = y_0, \end{cases}$$

Suppose g is of exponential order, then the solution to the IVP is also of exponential order.

Proof By Lemma, $\exists K, a \in \mathbb{R}$ such that $|g(u)| \leq Ke^{au}$ for all $u \geq 0$.

For all
$$t \ge 0$$
, $|\varphi(t)| \le e^{-bt} \left(\int_0^t e^{bu} K e^{au} du + |y_0| \right)$

$$= e^{-bt} \left(\frac{K \left(e^{(a+b)t} - 1 \right)}{a+b} + |y_0| \right)$$

$$\le \frac{K}{a+b} e^{at} + |y_0| e^{-bt}$$

$$\le \left(\frac{K}{a+b} + |y_0| \right) e^{ct} \qquad \text{where } c = \max\{a, -b\}$$

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

• $\varphi \in C^1[0,\infty)$

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C^1[0,\infty)$
- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C^1[0,\infty)$
- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\bullet \ \varphi(0) = y_0, \quad \varphi'(0) = y_1$

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C^1[0,\infty)$
- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\varphi(0) = y_0$, $\varphi'(0) = y_1$

To get solution consider case where $b^2 - 4ac \ge 0$

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C^1[0,\infty)$
- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\varphi(0) = y_0$, $\varphi'(0) = y_1$

To get solution consider case where $b^2 - 4ac \ge 0$

May assume a = 1.

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C^1[0,\infty)$
- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\varphi(0) = y_0, \quad \varphi'(0) = y_1$

To get solution consider case where $b^2 - 4ac \ge 0$

May assume a = 1.

Rewrite DE $y'' - (\alpha + \beta)y' + \alpha\beta y = g(t)$ where $\alpha, \beta \in \mathbb{R}$

Consider second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Meaning of solution $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ such that

- $\varphi \in C^1[0,\infty)$
- $a\varphi''(t) + b\varphi'(t) + c\varphi(t) = g(t)$ for all $t \in [0, \infty)$ at which g is continuous
- $\varphi(0) = y_0, \quad \varphi'(0) = y_1$

To get solution consider case where $b^2 - 4ac \ge 0$

May assume a = 1.

Rewrite DE
$$y'' - (\alpha + \beta)y' + \alpha\beta y = g(t)$$
 where $\alpha, \beta \in \mathbb{R}$
$$(D - \alpha)(D - \beta)[y] = g(t)$$

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases} (*)$$

Consider first order IVP $\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases} (*)$

Solution to (*) $h:[0,\infty) \longrightarrow \mathbb{R}$, continuous on $[0,\infty)$

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases} (*)$$

Consider
$$\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ y(0) = y_0 \end{cases}$$
 (**)

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases} (*)$$

Consider
$$\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ y(0) = y_0 \end{cases}$$
 (**)

Solution to (**) $\varphi: [0, \infty) \longrightarrow \mathbb{R}$

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases} (*)$$

Consider
$$\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ y(0) = y_0 \end{cases}$$
 (**)

Solution to (**) $\varphi: [0, \infty) \longrightarrow \mathbb{R}$

Claim $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ is the solution to given 2nd order IVP

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases}$$
 (*)

Consider
$$\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ y(0) = y_0 \end{cases}$$
 (**)

Solution to (**) $\varphi: [0, \infty) \longrightarrow \mathbb{R}$

Claim $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ is the solution to given 2nd order IVP

• φ is continuous in $[0, \infty)$

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases}$$
 (*)

Consider
$$\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ y(0) = y_0 \end{cases}$$
 (**)

Solution to (**) $\varphi: [0, \infty) \longrightarrow \mathbb{R}$

Claim $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ is the solution to given 2nd order IVP

• φ is continuous in $[0, \infty)$

For all $t \in [0, \infty)$, $\varphi'(t) - \beta \varphi(t) = h(t)$

Consider first order IVP
$$\begin{cases} w' - \alpha w = g(t), & t \ge 0, \\ w(0) = y_1 - \beta y_0 \end{cases}$$
 (*)

Consider
$$\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ y(0) = y_0 \end{cases}$$
 (**)

Solution to (**) $\varphi: [0, \infty) \longrightarrow \mathbb{R}$

Claim $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ is the solution to given 2nd order IVP

• φ is continuous in $[0, \infty)$

For all
$$t \in [0, \infty)$$
, $\varphi'(t) - \beta \varphi(t) = h(t)$

 φ' is continuous in $[0, \infty)$

$$h'(t) - \alpha h(t) = g(t)$$

$$h'(t) - \alpha h(t) = g(t)$$

Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$

$$h'(t) - \alpha h(t) = g(t)$$
 Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$

$$= \alpha h(t) + g(t)$$

$$h'(t) - \alpha h(t) = g(t)$$
 Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$

$$= \alpha h(t) + g(t)$$

$$= \alpha \left(\varphi'(t) - \beta \varphi(t) \right) + g(t)$$

$$h'(t) - \alpha h(t) = g(t)$$
 Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$

$$= \alpha h(t) + g(t)$$

$$= \alpha \left(\varphi'(t) - \beta \varphi(t) \right) + g(t)$$
 That is,
$$\varphi''(t) - (\alpha + \beta) \varphi'(t) + \alpha \beta \varphi(t) = g(t)$$

$$h'(t) - \alpha h(t) = g(t)$$
 Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$

$$= \alpha h(t) + g(t)$$

$$= \alpha \left(\varphi'(t) - \beta \varphi(t) \right) + g(t)$$

That is,
$$\varphi''(t) - (\alpha + \beta)\varphi'(t) + \alpha\beta\varphi(t) = g(t)$$

• Initial conditions $\varphi(0) = y_0$

$$h'(t) - \alpha h(t) = g(t)$$

Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$
$$= \alpha h(t) + g(t)$$
$$= \alpha \left(\varphi'(t) - \beta \varphi(t) \right) + g(t)$$

That is,
$$\varphi''(t) - (\alpha + \beta)\varphi'(t) + \alpha\beta\varphi(t) = g(t)$$

• Initial conditions $\varphi(0) = y_0$

$$\varphi'(0) = h(0) + \beta \varphi(0)$$

$$h'(t) - \alpha h(t) = g(t)$$

Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$
$$= \alpha h(t) + g(t)$$
$$= \alpha \left(\varphi'(t) - \beta \varphi(t) \right) + g(t)$$

That is,
$$\varphi''(t) - (\alpha + \beta)\varphi'(t) + \alpha\beta\varphi(t) = g(t)$$

• Initial conditions $\varphi(0) = y_0$ $\varphi'(0) = h(0) + \beta \varphi(0)$ $= (y_1 - \beta y_0) + \beta y_0$

$$h'(t) - \alpha h(t) = g(t)$$

Hence
$$\varphi''(t) - \beta \varphi'(t) = h'(t)$$
$$= \alpha h(t) + g(t)$$
$$= \alpha \left(\varphi'(t) - \beta \varphi(t) \right) + g(t)$$

That is,
$$\varphi''(t) - (\alpha + \beta)\varphi'(t) + \alpha\beta\varphi(t) = g(t)$$

• Initial conditions $\varphi(0) = y_0$ $\varphi'(0) = h(0) + \beta \varphi(0)$ $= (y_1 - \beta y_0) + \beta y_0$ $= y_1$

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Suppose g is of exponential order, then the derivative of the solution to the IVP is also of exponential order.

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Suppose g is of exponential order, then the derivative of the solution to the IVP is also of exponential order.

Proof Consider $b^2 - 4ac \ge 0$, with a = 1.

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Suppose g is of exponential order, then the derivative of the solution to the IVP is also of exponential order.

Proof Consider $b^2 - 4ac \ge 0$, with a = 1.

By Theorem A, the solution $h:[0,\infty)\longrightarrow \mathbb{R}$ to the IVP $\begin{cases} w'-\alpha w=g(t), & t\geq 0,\\ w(0)=y_1-\beta y_0 \end{cases}$ is of exponential order.

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Suppose g is of exponential order, then the derivative of the solution to the IVP is also of exponential order.

Proof Consider $b^2 - 4ac \ge 0$, with a = 1.

By Theorem A, the solution $h:[0,\infty)\longrightarrow \mathbb{R}$ to the IVP $\begin{cases} w'-\alpha w=g(t), & t\geq 0,\\ w(0)=y_1-\beta y_0 \end{cases}$ is of exponential order.

Soln to given 2nd order IVP $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ is soln to $\begin{cases} y'-\beta y=h(t), & t\geq 0,\\ y(0)=y_0. \end{cases}$

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Suppose g is of exponential order, then the derivative of the solution to the IVP is also of exponential order.

Proof Consider $b^2 - 4ac \ge 0$, with a = 1.

By Theorem A, the solution $h:[0,\infty)\longrightarrow \mathbb{R}$ to the IVP $\begin{cases} w'-\alpha w=g(t), & t\geq 0,\\ w(0)=y_1-\beta y_0 \end{cases}$ is of exponential order.

Soln to given 2nd order IVP $\varphi:[0,\infty)\longrightarrow \mathbb{R}$ is soln to $\begin{cases} y'-\beta y=h(t), & t\geq 0,\\ y(0)=y_0. \end{cases}$

By Theorem A, φ is of exponential order.

Theorem B Consider the second order IVP
$$\begin{cases} ay'' + by' + cy = g(t), & t \ge 0, \\ y(0) = y_0, & y'(0) = y_1 \end{cases}$$

Suppose g is of exponential order, then the derivative of the solution to the IVP is also of exponential order.

Proof Consider $b^2 - 4ac \ge 0$, with a = 1.

By Theorem A, the solution $h:[0,\infty)\longrightarrow \mathbb{R}$ to the IVP $\begin{cases} w'-\alpha w=g(t), & t\geq 0,\\ w(0)=y_1-\beta y_0 \end{cases}$ is of exponential order.

Soln to given 2nd order IVP $\varphi: [0, \infty) \longrightarrow \mathbb{R}$ is soln to $\begin{cases} y' - \beta y = h(t), & t \ge 0, \\ v(0) = v_0. \end{cases}$

By Theorem A, φ is of exponential order.

Hence, $\varphi' = \beta \varphi + h$ is of exponential order.

Example Find the Laplace transform of
$$g$$
 where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Example Find the Laplace transform of
$$g$$
 where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

• $|g(t)| \le 2e^{0t}$ for all $t \ge 0$

Example Find the Laplace transform of
$$g$$
 where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

• $|g(t)| \le 2e^{0t}$ for all $t \ge 0$

Hence $\mathcal{L}(g)(s)$ exists for all s > 0.

Example Find the Laplace transform of g where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

- $|g(t)| \le 2e^{0t}$ for all $t \ge 0$ Hence $\mathcal{L}(g)(s)$ exists for all s > 0.
- g is discontinuous at $t = 2\pi$ (cont. elsewhere)

Example Find the Laplace transform of g where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

- $|g(t)| \le 2e^{0t}$ for all $t \ge 0$ Hence $\mathcal{L}(g)(s)$ exists for all s > 0.
- g is discontinuous at $t = 2\pi$ (cont. elsewhere)

Example Find the Laplace transform of g where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

- $|g(t)| \le 2e^{0t}$ for all $t \ge 0$ Hence $\mathcal{L}(g)(s)$ exists for all s > 0.
- g is discontinuous at $t = 2\pi$ (cont. elsewhere)
- Value of g at $t = 2\pi$ doesn't matter

Example Find the Laplace transform of g where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

- $|g(t)| \le 2e^{0t}$ for all $t \ge 0$ Hence $\mathcal{L}(g)(s)$ exists for all s > 0.
- g is discontinuous at $t = 2\pi$ (cont. elsewhere)
- Value of g at $t = 2\pi$ doesn't matter

Method 1 Use definition $\mathcal{L}(g)(s) = \int_0^\infty e^{-st} f(t) dt$

Example Find the Laplace transform of g where $g(t) = \begin{cases} \sin t & \text{if } 0 \le t < 2\pi \\ \sin t + \cos t & \text{if } t \ge 2\pi \end{cases}$

Note

- $|g(t)| \le 2e^{0t}$ for all $t \ge 0$ Hence $\mathcal{L}(g)(s)$ exists for all s > 0.
- g is discontinuous at $t = 2\pi$ (cont. elsewhere)
- Value of g at $t = 2\pi$ doesn't matter

Method 1 Use definition
$$\mathcal{L}(g)(s) = \int_0^\infty e^{-st} f(t) dt$$

$$= \int_0^{2\pi} e^{-st} \sin t \, dt + \int_{2\pi}^{\infty} e^{-st} (\sin t + \cos t) \, dt$$

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where c is a *positive* constant.

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where c is a *positive* constant.

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where *c* is a *positive* constant.

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where c is a *positive* constant.

For
$$s > 0$$
, $\mathcal{L}(u_c)(s) = \int_0^\infty e^{-st} u_c(t) dt$

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where *c* is a *positive* constant.

For
$$s > 0$$
, $\mathcal{L}(u_c)(s) = \int_0^\infty e^{-st} u_c(t) dt$
$$= \int_c^\infty e^{-st} dt$$

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where c is a *positive* constant.

For
$$s > 0$$
, $\mathcal{L}(u_c)(s) = \int_0^\infty e^{-st} u_c(t) dt$
$$= \int_c^\infty e^{-st} dt$$
$$= \left[\frac{e^{-st}}{-s}\right]_c^\infty$$

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } t > c \end{cases}$$

where *c* is a *positive* constant.

For
$$s > 0$$
, $\mathcal{L}(u_c)(s) = \int_0^\infty e^{-st} u_c(t) dt$

$$= \int_c^\infty e^{-st} dt$$

$$= \left[\frac{e^{-st}}{-s} \right]_c^\infty$$

$$= \frac{1}{s} e^{-cs}$$

$$\mathcal{L}(u_c(t)f(t-c))(s) = e^{-cs}\mathcal{L}(f)(s)$$

$$\mathcal{L}\left(u_c(t)f(t-c)\right)(s) = e^{-cs}\mathcal{L}(f)(s)$$

Note
$$u_c(t)f(t-c) = \begin{cases} 0 & \text{if } 0 \le t < c \\ f(t-c) & \text{if } t > c. \end{cases}$$

$$\mathcal{L}\left(u_c(t)f(t-c)\right)(s) = e^{-cs}\mathcal{L}(f)(s)$$

Note
$$u_c(t)f(t-c) = \begin{cases} 0 & \text{if } 0 \le t < c \\ f(t-c) & \text{if } t > c. \end{cases}$$

$$\mathcal{L}\left(u_c(t)f(t-c)\right)(s) = e^{-cs}\mathcal{L}(f)(s)$$

Note
$$u_c(t)f(t-c) = \begin{cases} 0 & \text{if } 0 \le t < c \\ f(t-c) & \text{if } t > c. \end{cases}$$

Then for any c > 0, $\mathcal{L}(u_c(t)f(t-c))(s)$ exists for all s > a and

$$\mathcal{L}\left(u_c(t)f(t-c)\right)(s) = e^{-cs}\mathcal{L}(f)(s)$$

Note
$$u_c(t)f(t-c) = \begin{cases} 0 & \text{if } 0 \le t < c \\ f(t-c) & \text{if } t > c. \end{cases}$$

 $u_t(c)f(t-c)$ is translation of the function f(t), $t \ge 0$, to the right by a distance c,

$$y = u_t(c)f(t-c)$$

Then for any c > 0, $\mathcal{L}(u_c(t)f(t-c))(s)$ exists for all s > a and

$$\mathcal{L}\left(u_c(t)f(t-c)\right)(s) = e^{-cs}\mathcal{L}(f)(s)$$

Note
$$u_c(t)f(t-c) = \begin{cases} 0 & \text{if } 0 \le t < c \\ f(t-c) & \text{if } t > c. \end{cases}$$

 $u_t(c)f(t-c)$ is *translation* of the function f(t), $t \ge 0$, to the right by a distance c, supplemented by the 0 function on [0, c).

