$$y'' + 4y' + 4y = 8e^{-2t}$$

$$y'' + 4y' + 4y = 8e^{-2t}$$

Discussion

• Complementary solution $y_h(t) = c_1 e^{-2t} + c_2 t e^{-2t}$

$$y'' + 4y' + 4y = 8e^{-2t}$$

- Complementary solution $y_h(t) = c_1 e^{-2t} + c_2 t e^{-2t}$
- To solve given DE
 - ♦ **Reduction of order** general solution $y(t) = v(t)e^{-2t}$

$$y'' + 4y' + 4y = 8e^{-2t}$$

- Complementary solution $y_h(t) = c_1 e^{-2t} + c_2 t e^{-2t}$
- To solve given DE
 - ♦ **Reduction of order** general solution $y(t) = v(t)e^{-2t}$
 - ♦ **Variation of parameters** general solution $y(t) = c_1(t)e^{-2t} + c_2(t)te^{-2t}$

$$y'' + 4y' + 4y = 8e^{-2t}$$

- Complementary solution $y_h(t) = c_1 e^{-2t} + c_2 t e^{-2t}$
- To solve given DE
 - ♦ **Reduction of order** general solution $y(t) = v(t)e^{-2t}$
 - ♦ **Variation of parameters** general solution $y(t) = c_1(t)e^{-2t} + c_2(t)te^{-2t}$
 - **Undetermined coefficients** particular solution $y_p(t) = t^2 A e^{-2t}$

• Non-linear F(t, y, y', y'') = 0 or y'' = f(t, y, y') (difficult)

- Non-linear F(t, y, y', y'') = 0 or y'' = f(t, y, y') (difficult)
- Linear (general case, difficult)

$$\Rightarrow \text{ DE } P(t)y'' + Q(t)y' + R(t)y = G(t), \quad a < t < b$$

$$\Rightarrow \text{ IVP } \begin{cases} P(t)y'' + Q(t)y' + R(t)y = G(t), & a < t < b \\ y(t_0) = y_0, & y'(t_0) = y'_0 \end{cases}$$

- Non-linear F(t, y, y', y'') = 0 or y'' = f(t, y, y') (difficult)
- Linear (general case, difficult)

$$\diamond$$
 DE $P(t)y'' + Q(t)y' + R(t)y = G(t)$, $a < t < b$

$$\diamond \ \mathsf{IVP} \quad \begin{cases} P(t)y'' + Q(t)y' + R(t)y = G(t), & a < t < b \\ y(t_0) = y_0, & y'(t_0) = y_0' \end{cases}$$

Consider

$$\diamond$$
 DE $y'' + p(t)y' + q(t)y = g(t)$, $a < t < b$

$$\Rightarrow \text{ IVP} \begin{cases} y'' + p(t)y' + q(t)y = g(t), & a < t < b \\ y(t_0) = y_0, & y'(t_0) = y'_0 \end{cases}$$

where $p, q, g \in C(a, b)$

- Non-linear F(t, y, y', y'') = 0 or y'' = f(t, y, y') (difficult)
- Linear (general case, difficult)

$$\diamond$$
 DE $P(t)y'' + Q(t)y' + R(t)y = G(t)$, $a < t < b$

$$\Rightarrow \text{ IVP } \begin{cases} P(t)y'' + Q(t)y' + R(t)y = G(t), & a < t < b \\ y(t_0) = y_0, & y'(t_0) = y_0' \end{cases}$$

Consider

$$\diamond$$
 DE $y'' + p(t)y' + q(t)y = g(t)$, $a < t < b$

$$\Rightarrow \text{ IVP} \begin{cases} y'' + p(t)y' + q(t)y = g(t), & a < t < b \\ y(t_0) = y_0, & y'(t_0) = y'_0 \end{cases}$$

where $p, q, g \in C(a, b)$ No formula for solution

• Homogeneous y'' + p(t)y' + q(t)y = 0

• Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2

- Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2
 - \diamond Constant coefficients ay'' + by' + cy = 0 three cases

- Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2
 - \diamond Constant coefficients ay'' + by' + cy = 0 three cases
 - \diamond Reduction of order know solution y_1 (nowhere 0)

general solution
$$\begin{cases} y(t) = v(t)y_1(t) \\ W(y_1, y) = Ce^{\int p(t) dt} \end{cases}$$

- Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2
 - \diamond Constant coefficients ay'' + by' + cy = 0 three cases
 - \diamond Reduction of order know solution y_1 (nowhere 0)

general solution
$$\begin{cases} y(t) = v(t)y_1(t) \\ W(y_1, y) = Ce^{\int p(t) dt} \end{cases}$$

• Non-homogeneous y'' + p(t)y' + q(t)y = g(t) $y(t) = y_h(t) + y_p(t)$

- Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2
 - \diamond Constant coefficients ay'' + by' + cy = 0 three cases
 - \diamond Reduction of order know solution y_1 (nowhere 0)

general solution
$$\begin{cases} y(t) = v(t)y_1(t) \\ W(y_1, y) = Ce^{\int p(t) dt} \end{cases}$$

• Non-homogeneous y'' + p(t)y' + q(t)y = g(t) $y(t) = y_h(t) + y_p(t)$

$$\diamond \ \ \text{Undetermined coeff.} \quad ay'' + by' + cy = \begin{cases} P_n(t) \mathrm{e}^{\alpha t} \sin \beta t \\ P_n(t) \mathrm{e}^{\alpha t} \cos \beta t \end{cases} \qquad \text{form of } y_p(t)$$

- Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2
 - \diamond Constant coefficients ay'' + by' + cy = 0 three cases
 - \diamond Reduction of order know solution y_1 (nowhere 0)

general solution
$$\begin{cases} y(t) = v(t)y_1(t) \\ W(y_1, y) = Ce^{\int p(t) dt} \end{cases}$$

- Non-homogeneous y'' + p(t)y' + q(t)y = g(t) $y(t) = y_h(t) + y_p(t)$
 - $\diamond \text{ Undetermined coeff.} \quad ay'' + by' + cy = \begin{cases} P_n(t) e^{\alpha t} \sin \beta t \\ P_n(t) e^{\alpha t} \cos \beta t \end{cases} \text{ form of } y_p(t)$
 - \diamond Variation of parameters know complementary soln $y_h = c_1 y_1(t) + c_2 y_2(t)$ general solution $y = c_1(t)y_1(t) + c_2(t)y_2(t)$

- Homogeneous y'' + p(t)y' + q(t)y = 0 solution space dim= 2
 - \diamond Constant coefficients ay'' + by' + cy = 0 three cases
 - \diamond Reduction of order know solution y_1 (nowhere 0)

general solution
$$\begin{cases} y(t) = v(t)y_1(t) \\ W(y_1, y) = Ce^{\int p(t) dt} \end{cases}$$

- Non-homogeneous y'' + p(t)y' + q(t)y = g(t) $y(t) = y_h(t) + y_p(t)$
 - $\Rightarrow \text{ Undetermined coeff.} \quad ay'' + by' + cy = \begin{cases} P_n(t) e^{\alpha t} \sin \beta t \\ P_n(t) e^{\alpha t} \cos \beta t \end{cases} \qquad \text{form of } y_p(t)$
 - \diamond Variation of parameters know complementary soln $y_h = c_1 y_1(t) + c_2 y_2(t)$ general solution $y = c_1(t)y_1(t) + c_2(t)y_2(t)$
 - ♦ Reduction of order know solution y_1 (nowhere 0) to homo DE general solution $y(t) = v(t)y_1(t)$

*n*th Order Linear DE/IVP

nth Order Linear DE/IVP 舉 2 反 n

• E & U Theorem ?
$$\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

nth Order Linear DE/IVP $ag{P}$ $ag{P}$ $ag{IVP}$

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?

nth Order Linear DE/IVP $ag{P}$ $ag{P}$ $ag{IVP}$

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?
 - \diamond Wronskian ? $W(y_1, y_2, \dots, y_n)(t)$

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?
 - \diamond Wronskian ? $W(y_1, y_2, \dots, y_n)(t)$
 - \diamond Constant coefficients ? $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0$

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?
 - \diamond Wronskian ? $W(y_1, y_2, \dots, y_n)(t)$
 - \diamond Constant coefficients ? $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0$
 - Reduction of order?

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?
 - \diamond Wronskian ? $W(y_1, y_2, \dots, y_n)(t)$
 - \diamond Constant coefficients ? $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0$
 - Reduction of order?
- Non-homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \cdots + p_1(t)y' + p_0(t)y = g(t)$
 - Undetermined coefficients method?

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \cdots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \cdots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?
 - \diamond Wronskian ? $W(y_1, y_2, \dots, y_n)(t)$
 - \diamond Constant coefficients ? $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0$
 - Reduction of order ?
- Non-homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \cdots + p_1(t)y' + p_0(t)y = g(t)$
 - Undetermined coefficients method?
 - \diamond Variation of parameters ? $y(t) = c_1(t)y_1(t) + c_2(t)y_2(t) + \cdots + c_n(t)y_n(t)$

- E & U Theorem ? $\begin{cases} y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = g(t) \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \dots + p_1(t)y' + p_0(t)y = 0$
- - Dim of solution space ?
 - \diamond Wronskian ? $W(y_1, y_2, \dots, y_n)(t)$
 - \diamond Constant coefficients ? $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y = 0$
 - Reduction of order ?
- Non-homogeneous $y^{(n)} + p_{n-1}(t)y^{(n-1)} + \cdots + p_1(t)y' + p_0(t)y = g(t)$
 - Undetermined coefficients method?
 - \diamond Variation of parameters ? $y(t) = c_1(t)y_1(t) + c_2(t)y_2(t) + \cdots + c_n(t)y_n(t)$
 - Reduction of order ?

Chapter 3: First Order Systems

- (1) E & U Theorem
- (2) Linear Systems
- (3) Homogeneous Systems with Constant Coefficients
 - Elimination
 - Matrix Exponential
 - Eigenvalues Method
- (4) Non-homogeneous Systems
 - Undetermined Coefficients
 - Variation of Parameters

First Order System (explicit form, *n* equations, *n* unknown functions)

$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n) \end{cases}$$

First Order System (explicit form, *n* equations, *n* unknown functions)

$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n) \end{cases}$$

Solutions to the system in an open interval (a, b) expressed in the form

$$\begin{cases} x_1 &= \varphi_1(t) \\ x_2 &= \varphi_2(t) \\ &\vdots \\ x_n &= \varphi_n(t), \end{cases} \qquad a < t < b$$

First Order System (explicit form, *n* equations, *n* unknown functions)

$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n) \end{cases}$$

Solutions to the system in an open interval (a, b) expressed in the form

$$\begin{cases} x_1 &= \varphi_1(t) \\ x_2 &= \varphi_2(t) \\ &\vdots \\ x_n &= \varphi_n(t), \end{cases} \qquad a < t < b$$

for each $i = 1, 2, \dots, n$, $\varphi'_i(t) = F_i(t, \varphi_1(t), \varphi_2(t), \dots, \varphi_n(t)) \quad \forall t \in (a, b)$

1st order system IVP

• First order system
$$\begin{cases} x_1' &= F_1(t,x_1,\ldots,x_n) \\ x_2' &= F_2(t,x_1,\ldots,x_n) \\ \vdots \\ x_n' &= F_n(t,x_1,\ldots,x_n) \end{cases}$$
• Initial conditions
$$\begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

$$x_2(t_0) = x_2^0$$

$$\vdots$$

$$x_n(t_0) = x_n^0$$

1st order system IVP

• First order system
$$\begin{cases} x_1' &= F_1(t,x_1,\ldots,x_n) \\ x_2' &= F_2(t,x_1,\ldots,x_n) \\ \vdots \\ x_n' &= F_n(t,x_1,\ldots,x_n) \end{cases}$$
• Initial conditions
$$\begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

$$x_2(t_0) = x_2^0$$

$$\vdots$$

$$x_n(t_0) = x_n^0$$

$$(t_0, x_1^0, x_2^0, \dots, x_n^0) \in \text{dom } F_i$$
 for all $i = 1, \dots, n$

Remark Every *n*th order DE in explicit form

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Remark Every *n*th order DE in explicit form

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

$$x_1 = y$$

Remark Every *n*th order DE in explicit form

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

$$\begin{cases} x_1 &= y \\ x_2 &= y' \end{cases}$$

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

$$\begin{cases} x_1 &= y \\ x_2 &= y' \\ x_3 &= y'' \\ \vdots & \vdots \\ x_{n-1} &= y^{(n-2)} \\ x_n &= y^{(n-1)} \end{cases}$$

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

n.
$$\begin{cases}
x_1 &= y \\
x_2 &= y' \\
x_3 &= y'' \\
\vdots &\vdots \\
x_{n-1} &= y^{(n-2)} \\
x_n &= y^{(n-1)}
\end{cases}$$

$$x'_{1} = x'_{2} = x'_{2} = x'_{n-1} = x'_{n} =$$

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

n.
$$\begin{cases}
x_1 &= y \\
x_2 &= y' \\
x_3 &= y'' \\
\vdots \\
x_{n-1} &= y^{(n-2)} \\
x_n &= y^{(n-1)}
\end{cases}$$

$$x'_1 = x_2$$

$$x'_2 =$$

$$\vdots$$

$$x'_{n-1} =$$

$$x'_n =$$

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

n.
$$\begin{cases}
x_1 &= y \\
x_2 &= y' \\
x_3 &= y'' \\
\vdots &\vdots \\
x_{n-1} &= y^{(n-2)} \\
x_n &= y^{(n-1)}
\end{cases}$$

$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= x_3 \\ \vdots \\ x'_{n-1} &= \\ x'_n &= \end{cases}$$

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

m.
$$\begin{cases}
x_1 &= y \\
x_2 &= y' \\
x_3 &= y'' \\
\vdots &\vdots \\
x_{n-1} &= y^{(n-2)} \\
x_n &= y^{(n-1)}
\end{cases}$$

$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= x_3 \\ \vdots \\ x'_{n-1} &= x_n \\ x'_n &= \end{cases}$$

$$y^{(n)} = F(t, y, y', \dots, y^{(n-1)})$$

can be written as 1st order system.

Put

n.
$$\begin{cases}
x_1 &= y \\
x_2 &= y' \\
x_3 &= y'' \\
\vdots \\
x_{n-1} &= y^{(n-2)} \\
x_n &= y^{(n-1)}
\end{cases}$$

$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= x_3 \\ \vdots \\ x'_{n-1} &= x_n \\ x'_n &= F(t, x_1, x_2, \dots, x_n) \end{cases}$$

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix} \qquad a< t< b,$$

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix}$$

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix} \qquad a < t < b,$$

- Similarly, can define
 - vector-valued functions of several variables.

9

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix} \qquad a < t < b,$$

- Similarly, can define
 - vector-valued functions of several variables.
 - matrix-valued functions of one or several variables.

Vector Notation

Let $f_i:(a,b)\longrightarrow \mathbb{R}$ $(i=1,\ldots,n)$ be (real-valued) functions.

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix} \qquad a < t < b,$$

- Similarly, can define
 - vector-valued functions of several variables.
 - matrix-valued functions of one or several variables.
- \diamond If all the f_i 's are continuous, say that **f** is continuous.

Vector Notation

Let $f_i:(a,b)\longrightarrow \mathbb{R}$ $(i=1,\ldots,n)$ be (real-valued) functions.

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix} \qquad a< t< b,$$

- Similarly, can define
 - vector-valued functions of several variables.
 - matrix-valued functions of one or several variables.
- \diamond If all the f_i 's are continuous, say that **f** is continuous.
 - \diamond If all the f_i 's are differentiable, say that **f** is differentiable.

Vector Notation

Let $f_i:(a,b)\longrightarrow \mathbb{R}$ $(i=1,\ldots,n)$ be (real-valued) functions.

• Define
$$\mathbf{f}:(a,b)\longrightarrow \mathbb{R}^n$$
 by
$$\mathbf{f}(t)=\begin{bmatrix} f_1(t)\\ \vdots\\ f_n(t) \end{bmatrix} \qquad a < t < b,$$

- Similarly, can define
 - vector-valued functions of several variables.
 - matrix-valued functions of one or several variables.
- \diamond If all the f_i 's are continuous, say that \mathbf{f} is continuous.
 - \diamond If all the f_i 's are differentiable, say that **f** is differentiable.

Define derivative of
$$\mathbf{f}$$
 $\mathbf{f}':(a,b)\longrightarrow \mathbb{R}^n$ $\mathbf{f}'(t)=\begin{bmatrix} f_1'(t)\\ \vdots\\ f_n'(t)\end{bmatrix}$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Notation
$$\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^T$$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Notation
$$\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^T$$

Notation Write $\mathbf{x}(t) = \mathbf{v}f(t)$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Notation
$$\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^T$$

Notation Write $\mathbf{x}(t) = \mathbf{v}f(t)$

Example Let $\mathbf{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Define $\mathbf{x} : \mathbb{R} \longrightarrow \mathbb{R}^n$ by $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$. Then

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Notation
$$\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^T$$

Notation Write $\mathbf{x}(t) = \mathbf{v}f(t)$

Example Let $\mathbf{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Define $\mathbf{x} : \mathbb{R} \longrightarrow \mathbb{R}^n$ by $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$. Then

$$\mathbf{x}'(t) = \mathbf{v}\lambda \mathbf{e}^{\lambda t}$$

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Notation
$$\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^T$$

Notation Write $\mathbf{x}(t) = \mathbf{v}f(t)$

Example Let $\mathbf{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Define $\mathbf{x} : \mathbb{R} \longrightarrow \mathbb{R}^n$ by $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$. Then

$$\mathbf{x}'(t) = \mathbf{v}\lambda \mathbf{e}^{\lambda t}$$

Remark Formula valid for $\mathbf{v} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$,

Define $\mathbf{x}:(a,b)\longrightarrow \mathbb{R}^n$ by

$$\mathbf{x}(t) = f(t)\mathbf{v}$$

Then $\mathbf{x}'(t) = f'(t)\mathbf{v}$

Proof
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
 $\mathbf{x}(t) = \begin{bmatrix} v_1 f(t) \\ \vdots \\ v_n f(t) \end{bmatrix}$

Notation
$$\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}^T$$

Notation Write $\mathbf{x}(t) = \mathbf{v}f(t)$

Example Let $\mathbf{v} \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Define $\mathbf{x} : \mathbb{R} \longrightarrow \mathbb{R}^n$ by $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$. Then

$$\mathbf{x}'(t) = \mathbf{v}\lambda \mathbf{e}^{\lambda t}$$

Remark Formula valid for $\mathbf{v} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$, $\mathbf{x} : \mathbb{R} \longrightarrow \mathbb{C}^n$

System
$$\begin{cases} x_1' &= F_1(t, x_1, \dots, x_n) \\ x_2' &= F_2(t, x_1, \dots, x_n) \\ \vdots & & \\ x_n' &= F_n(t, x_1, \dots, x_n), \end{cases}$$

System
$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots & & \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n), \end{cases} \text{ Init. cond.} \begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots & \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

System
$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots && \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n), \end{cases} \text{ Init. cond.} \begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots && \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

Put
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
,

System
$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots & & \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n), \end{cases} \text{ Init. cond.} \begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots & & \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

Put
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
, $\mathbf{F}(t, \mathbf{x}) = \begin{bmatrix} F_1(t, \mathbf{x}) \\ \vdots \\ F_n(t, \mathbf{x}) \end{bmatrix}$,

System
$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots & & \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n), \end{cases} \text{ Init. cond.} \begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots & & \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

Put
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
, $\mathbf{F}(t, \mathbf{x}) = \begin{bmatrix} F_1(t, \mathbf{x}) \\ \vdots \\ F_n(t, \mathbf{x}) \end{bmatrix}$, $\mathbf{x}^0 = \begin{bmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{bmatrix}$

System
$$\begin{cases} x'_1 &= F_1(t, x_1, \dots, x_n) \\ x'_2 &= F_2(t, x_1, \dots, x_n) \\ \vdots & & \vdots \\ x'_n &= F_n(t, x_1, \dots, x_n), \end{cases} \text{ Init. cond.} \begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots & & \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

Put
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
, $\mathbf{F}(t, \mathbf{x}) = \begin{bmatrix} F_1(t, \mathbf{x}) \\ \vdots \\ F_n(t, \mathbf{x}) \end{bmatrix}$, $\mathbf{x}^0 = \begin{bmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{bmatrix}$

• System can be written as $\mathbf{x'} = \mathbf{F}(t, \mathbf{x})$

System
$$\begin{cases} x_1' &= F_1(t, x_1, \dots, x_n) \\ x_2' &= F_2(t, x_1, \dots, x_n) \\ \vdots & & \vdots \\ x_n' &= F_n(t, x_1, \dots, x_n), \end{cases} \text{ Init. cond.} \begin{cases} x_1(t_0) &= x_1^0 \\ x_2(t_0) &= x_2^0 \\ \vdots & & \vdots \\ x_n(t_0) &= x_n^0 \end{cases}$$

Put
$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
, $\mathbf{F}(t, \mathbf{x}) = \begin{bmatrix} F_1(t, \mathbf{x}) \\ \vdots \\ F_n(t, \mathbf{x}) \end{bmatrix}$, $\mathbf{x}^0 = \begin{bmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{bmatrix}$

• System can be written as $\mathbf{x'} = \mathbf{F}(t, \mathbf{x})$

• IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$.

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$.

Then in some neighborhood of t_0 , the IVP has a unique solution.

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$. Then in some neighborhood of t_0 , the IVP has a unique solution.

Proof Similar to that for 1st order IVP.

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$. Then in some neighborhood of t_0 , the IVP has a unique solution.

Proof Similar to that for 1st order IVP.

Instead of $C[t_0 - h, t_0 + h]$, {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R} }

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$. Then in some neighborhood of t_0 , the IVP has a unique solution.

Proof Similar to that for 1st order IVP.

Instead of $C[t_0 - h, t_0 + h]$, {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R} } consider $C([t_0 - h, t_0 + h], \mathbb{R}^n)$

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$. Then in some neighborhood of t_0 , the IVP has a unique solution.

Proof Similar to that for 1st order IVP.

Instead of $C[t_0 - h, t_0 + h]$, {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R} } consider $C([t_0 - h, t_0 + h], \mathbb{R}^n)$ {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R}^n }

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$. Then in some neighborhood of t_0 , the IVP has a unique solution.

Proof Similar to that for 1st order IVP.

Instead of $C[t_0 - h, t_0 + h]$, {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R} } consider $C([t_0 - h, t_0 + h], \mathbb{R}^n)$ {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R}^n }

For continuous
$$\varphi = \begin{bmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{bmatrix}$$
,

Consider the IVP
$$\begin{cases} \mathbf{x}' &= \mathbf{F}(t, \mathbf{x}) \\ \mathbf{x}(t_0) &= \mathbf{x}^0 \end{cases}$$
 Suppose F_1, \dots, F_n ,
$$\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_1}{\partial x_n}, \qquad \frac{\partial F_2}{\partial x_1}, \dots, \frac{\partial F_2}{\partial x_n}, \dots, \qquad \frac{\partial F_n}{\partial x_1}, \dots, \frac{\partial F_n}{\partial x_n} \end{cases}$$

are continuous on a neighborhood of $(t_0, x_1^0, \dots, x_n^0)$ where $\mathbf{x}^0 = \begin{bmatrix} x_1^0 & \dots & x_n^0 \end{bmatrix}^T$. Then in some neighborhood of t_0 , the IVP has a unique solution.

Proof Similar to that for 1st order IVP.

Instead of $C[t_0 - h, t_0 + h]$, {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R} } consider $C([t_0 - h, t_0 + h], \mathbb{R}^n)$ {continuous functions from $[t_0 - h, t_0 + h]$ into \mathbb{R}^n }

For continuous
$$\varphi = \begin{bmatrix} \varphi_1 \\ \vdots \\ \varphi_n \end{bmatrix}$$
, $\int_{t_0}^t \varphi(s) \, \mathrm{d}s = \begin{bmatrix} \int_{t_0}^t \varphi_1(s) \, \mathrm{d}s \\ \vdots \\ \int_{t_0}^t \varphi_n(s) \, \mathrm{d}s \end{bmatrix}$

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

Suppose that F, $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial y'}$, ..., $\frac{\partial F}{\partial y^{(n-1)}}$ are continuous on a neighborhood of $(t_0, y_0, y_0', \dots, y_0^{(n-1)})$.

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

Suppose that F, $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial y'}$, ..., $\frac{\partial F}{\partial y^{(n-1)}}$ are continuous on a neighborhood of $(t_0, y_0, y'_0, \dots, y_0^{(n-1)})$.

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

Suppose that F, $\frac{\partial F}{\partial v}$, $\frac{\partial F}{\partial v'}$, ..., $\frac{\partial F}{\partial v^{(n-1)}}$ are continuous on a neighborhood of

$$(t_0, y_0, y'_0, \dots, y_0^{(n-1)}).$$

$$x'_1 = x_2$$

$$x'_2 = x_3$$

$$\vdots$$

Proof Put
$$x_1 = y$$

$$\begin{cases}
x'_1 &= x_2 \\
x'_2 &= x_3
\end{cases}$$
Change to 1st order sys
$$\begin{cases}
x'_{n-1} &= x_n \\
x'_{n} &= F(t, x_1, x_2, \dots, x_n)
\end{cases}$$

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

Suppose that F, $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial y'}$, ..., $\frac{\partial F}{\partial y^{(n-1)}}$ are continuous on a neighborhood of

$$(t_0, y_0, y'_0, \dots, y_0^{(n-1)}).$$

Proof Put
$$x_1 = y$$

Proof Put
$$x_1 = y$$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \end{cases} = F_1(t, x_1, x_2, \dots, x_n)$$
 Change to 1st order sys
$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \end{cases}$$

$$\vdots$$

$$x'_{n-1} = x_n$$

$$x'_n = F(t, x_1, x_2, \dots, x_n)$$

$$x'_{n-1} = x_n$$

$$x'_n = F(t, x_1, x_2, \dots, x_n)$$

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

Suppose that F, $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial y'}$, ..., $\frac{\partial F}{\partial y^{(n-1)}}$ are continuous on a neighborhood of

$$(t_0, y_0, y'_0, \dots, y_0^{(n-1)}).$$

Proof Put
$$x_1 = y$$

Proof Put
$$x_1 = y$$

$$\begin{cases} x_1' &= x_2 \\ x_2' &= x_3 \end{cases} = F_1(t, x_1, x_2, \dots, x_n)$$
 Change to 1st order sys
$$\begin{cases} x_1' &= x_2 \\ x_2' &= x_3 \end{cases} = F_2(t, x_1, x_2, \dots, x_n)$$

$$\vdots$$

$$\begin{cases} x_{n-1}' &= x_n \\ x_n' &= F(t, x_1, x_2, \dots, x_n) \end{cases}$$

$$\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$$

 $\begin{cases} y^{(n)} = F(t, y, y', \dots, y^{(n-1)}), \\ y(t_0) = y_0, \quad y'(t_0) = y_0', \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)} \end{cases}$ Suppose that F, $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial y'}$, \dots , $\frac{\partial F}{\partial y^{(n-1)}}$ are continuous on a neighborhood of

$$(t_0, y_0, y'_0, \dots, y_0^{(n-1)}).$$

Proof Put
$$x_1 = y$$

$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= x_3 \end{cases} = F_1(t, x_1, x_2, \dots, x_n) \\ \vdots \\ x'_{n-1} &= x_n \\ x'_n &= F(t, x_1, x_2, \dots, x_n) \end{cases}$$
Change to 1st order sys
$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= x_3 \\ \vdots \\ x'_{n-1} &= x_n \\ x'_n &= F(t, x_1, x_2, \dots, x_n) \end{cases} = F_{n-1}(t, x_1, x_2, \dots, x_n)$$

$$x'_{n-1} = x_n = F_{n-1}(t, x_1, x_2, ..., x_n)$$

 $x'_n = F(t, x_1, x_2, ..., x_n) = F_n(t, x_1, x_2, ..., x_n)$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

Solution Put
$$\begin{cases} x_1 = y \\ x_2 = y' \end{cases}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) :=$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} \mathbf{x_2} \\ \end{bmatrix}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix},$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ \end{bmatrix}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} \mathbf{x}_2 \\ -\mathbf{x}_1 \end{bmatrix}, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} \mathbf{x}_2 \\ -\mathbf{x}_1 \end{bmatrix}, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

IVP is equivalent to

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} \mathbf{x}_2 \\ -\mathbf{x}_1 \end{bmatrix}, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

In turn equivalent to

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \int_0^t \mathbf{F}\left(s, \begin{bmatrix} x_1(s) \\ x_2(s) \end{bmatrix}\right) \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

Example Solve IVP
$$\begin{cases} y'' + y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$$

IVP is equivalent to

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \mathbf{F}(t, \mathbf{x}) := \begin{bmatrix} \mathbf{x}_2 \\ -\mathbf{x}_1 \end{bmatrix}, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

In turn equivalent to

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \int_0^t \mathbf{F}\left(s, \begin{bmatrix} x_1(s) \\ x_2(s) \end{bmatrix}\right) \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

$$\varphi_2(t) = \int_0^t \begin{bmatrix} -s \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take $\varphi_0(t) \equiv \begin{vmatrix} 1 \\ 0 \end{vmatrix}$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

$$\varphi_2(t) = \int_0^t \begin{bmatrix} -s \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^2}{2} \Big|_0^t \\ -s \Big|_0^t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

$$\boldsymbol{\varphi}_{2}(t) = \int_{0}^{t} \begin{bmatrix} -s \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^{2}}{2} \Big|_{0}^{t} \\ -s \Big|_{0}^{t} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - \frac{t^{2}}{2} \\ -t \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

$$\varphi_2(t) = \int_0^t \begin{bmatrix} -s \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^2}{2} \Big|_0^t \\ -s \Big|_0^t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - \frac{t^2}{2} \\ -t \end{bmatrix}$$

$$\varphi_3(t) = \int_0^t \begin{bmatrix} -s \\ -1 + \frac{s^2}{2} \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take
$$\varphi_0(t) \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

$$\varphi_2(t) = \int_0^t \begin{bmatrix} -s \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^2}{2} \Big|_0^t \\ -s \Big|_0^t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - \frac{t^2}{2} \\ -t \end{bmatrix}$$

$$\varphi_3(t) = \int_0^t \begin{bmatrix} -s \\ -1 + \frac{s^2}{2} \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^2}{2} \Big|_0^t \\ -s + \frac{s^3}{6} \Big|_0^t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$$

Iteration formula
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \mapsto \int_0^t \begin{bmatrix} x_2(s) \\ -x_1(s) \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Take $\varphi_0(t) \equiv \begin{vmatrix} 1 \\ 0 \end{vmatrix}$

$$\varphi_1(t) = \int_0^t \begin{bmatrix} 0 \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -t \end{bmatrix}$$

$$\varphi_2(t) = \int_0^t \begin{bmatrix} -s \\ -1 \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^2}{2} \Big|_0^t \\ -s \Big|_0^t \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - \frac{t^2}{2} \\ -t \end{bmatrix}$$

$$\varphi_{3}(t) = \int_{0}^{t} \begin{bmatrix} -s \\ -1 + \frac{s^{2}}{2} \end{bmatrix} ds + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{s^{2}}{2} \Big|_{0}^{t} \\ -s + \frac{s^{3}}{6} \Big|_{0}^{t} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 - \frac{t^{2}}{2} \\ -t + \frac{t^{3}}{3!} \end{bmatrix}$$

Using induction,

$$\varphi_n(t) = \int_0^t \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Using induction,

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} \left[1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \right] \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k+1}}{(2k+1)!} \right] \end{cases} \text{ if } n = 2k+1$$

Using induction,

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} \left[1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \right] \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k+1}}{(2k+1)!} \right] \end{cases} \text{ if } n = 2k+1$$

$$= \begin{cases} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k-1}}{(2k-1)!} \end{bmatrix} \text{ if } n = 2k$$

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k+1}}{(2k+1)!} \end{bmatrix} \quad \text{if } n = 2k+1$$

$$= \begin{cases} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k-1}}{(2k-1)!} \end{cases} \quad \text{if } n = 2k$$

$$\to \begin{cases} \cos t \end{cases}$$

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k+1}}{(2k+1)!} \end{bmatrix} \quad \text{if } n = 2k+1$$

$$= \begin{cases} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k-1}}{(2k-1)!} \end{cases} \quad \text{if } n = 2k$$

$$\to \begin{cases} \cos t \\ \vdots \end{cases}$$

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k+1}}{(2k+1)!} \end{bmatrix} & \text{if } n = 2k+1 \\ 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k} t^{2k}}{(2k)!} \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k} t^{2k-1}}{(2k-1)!} \end{bmatrix} & \text{if } n = 2k \end{cases}$$

$$\rightarrow \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} & \text{as } n \to \infty$$

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} \left[1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k}t^{2k}}{(2k)!} \right] & \text{if } n = 2k + 1 \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k}t^{2k+1}}{(2k+1)!} \right] \\ \left[1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k}t^{2k}}{(2k)!} \right] & \text{if } n = 2k \end{cases}$$

$$-t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k}t^{2k-1}}{(2k-1)!}$$

$$\Rightarrow \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} \quad \text{as } n \to \infty \quad \text{soln to system IVP} \quad \begin{cases} x_{1} = \cos t \\ x_{2} = -\sin t \end{cases}$$

$$\varphi_{n}(t) = \int_{0}^{t} \mathbf{F}(s, \varphi_{n-1}(s)) \, \mathrm{d}s + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{cases} \left[1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k}t^{2k}}{(2k)!} \right] & \text{if } n = 2k + 1 \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k}t^{2k+1}}{(2k+1)!} \right] \\ \left[1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \dots + \frac{(-1)^{k}t^{2k}}{(2k)!} \right] \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \dots + \frac{(-1)^{k}t^{2k-1}}{(2k-1)!} \end{cases} \quad \text{if } n = 2k$$

$$\to \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} \quad \text{as } n \to \infty \quad \text{soln to system IVP} \quad \begin{cases} x_{1} = \cos t \\ x_{2} = -\sin t \end{cases}$$

Solution to original IVP $y(t) = \cos t$

First order Linear systems

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &: & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &: & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

Put
$$\mathbf{P}(t) = \left[p_{ij}(t) \right]_{n \times n}$$

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &\vdots & a < t < b \end{cases}$$

$$x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t),$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n} \qquad \mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$$

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &\vdots \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

$$a < t < b$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

$$\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &\vdots & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

Matrix notation

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

If P is a constant matrix

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &\vdots & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

Matrix notation

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

• If **P** is a constant matrix (all p_{ij} 's are constant functions),

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &\vdots & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

Matrix notation

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

• If **P** is a constant matrix (all p_{ij} 's are constant functions), system (*) is called 1st order linear system with constant coefficients

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &\vdots & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

- If **P** is a constant matrix (all p_{ij} 's are constant functions), system (*) is called 1st order linear system with constant coefficients
- If $g_1 = \cdots = g_n = 0$, system (*) is said to be homogeneous

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &: & a < t < b \end{cases}$$

$$x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t),$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

- If **P** is a constant matrix (all p_{ij} 's are constant functions), system (*) is called 1st order linear system with constant coefficients
- If $g_1 = \cdots = g_n = 0$, system (*) is said to be homogeneous $\mathbf{x}' \mathbf{P}(t)\mathbf{x} = \mathbf{0}$

$$\begin{cases} x'_1 &= p_{11}(t)x_1 + \dots + p_{1n}(t)x_n + g_1(t), \\ &: & a < t < b \\ x'_n &= p_{n1}(t)x_1 + \dots + p_{nn}(t)x_n + g_n(t), \end{cases}$$

Put
$$\mathbf{P}(t) = \begin{bmatrix} p_{ij}(t) \end{bmatrix}_{n \times n}$$
 $\mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), \qquad a < t < b \tag{*}$$

- If **P** is a constant matrix (all p_{ij} 's are constant functions), system (*) is called 1st order linear system with constant coefficients
- If $g_1 = \cdots = g_n = 0$, system (*) is said to be homogeneous $\mathbf{x}' \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ otherwise, it is called non-homogeneous.

Consider the following system IVP

$$\begin{cases} \mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), & a < t < b \\ \mathbf{x}(t_0) = \mathbf{x}^0. \end{cases}$$

where $t_0 \in (a, b)$ and $\mathbf{x}^0 \in \mathbb{R}^n$.

Consider the following system IVP

$$\begin{cases} \mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), & a < t < b \\ \mathbf{x}(t_0) = \mathbf{x}^0. \end{cases}$$

where $t_0 \in (a, b)$ and $\mathbf{x}^0 \in \mathbb{R}^n$.

Suppose **P** and **g** are continuous on (a, b), that is, $p_{ij}, g_i \in C(a, b)$ for all i, j.

Consider the following system IVP

$$\begin{cases} \mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), & a < t < b \\ \mathbf{x}(t_0) = \mathbf{x}^0. \end{cases}$$

where $t_0 \in (a, b)$ and $\mathbf{x}^0 \in \mathbb{R}^n$.

Suppose **P** and **g** are continuous on (a, b), that is, $p_{ij}, g_i \in C(a, b)$ for all i, j.

Then the IVP has a unique solution in (a, b).

Consider the following system IVP

$$\begin{cases} \mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), & a < t < b \\ \mathbf{x}(t_0) = \mathbf{x}^0. \end{cases}$$

where $t_0 \in (a, b)$ and $\mathbf{x}^0 \in \mathbb{R}^n$.

Suppose **P** and **g** are continuous on (a, b), that is, $p_{ij}, g_i \in C(a, b)$ for all i, j.

Then the IVP has a unique solution in (a, b).

Proof Modify proof for general E&U Theorem.

Consider the following system IVP

$$\begin{cases} \mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), & a < t < b \\ \mathbf{x}(t_0) = \mathbf{x}^0. \end{cases}$$

where $t_0 \in (a, b)$ and $\mathbf{x}^0 \in \mathbb{R}^n$.

Suppose **P** and **g** are continuous on (a, b), that is, $p_{ij}, g_i \in C(a, b)$ for all i, j.

Then the IVP has a unique solution in (a, b).

Proof Modify proof for general E&U Theorem.

Corollary *E&U Theorem for nth order linear IVP.*

Consider the following system IVP

$$\begin{cases} \mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t), & a < t < b \\ \mathbf{x}(t_0) = \mathbf{x}^0. \end{cases}$$

where $t_0 \in (a, b)$ and $\mathbf{x}^0 \in \mathbb{R}^n$.

Suppose **P** and **g** are continuous on (a, b), that is, $p_{ij}, g_i \in C(a, b)$ for all i, j.

Then the IVP has a unique solution in (a, b).

Proof Modify proof for general E&U Theorem.

Corollary *E&U Theorem for nth order linear IVP.*

In what follows, P and g are assumed to be continuous.

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is *homogeneous*. Use linearity

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is homogeneous. Use linearity

$$L[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x}$$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is homogeneous. Use linearity

$$L[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x}$$

$$L: C^1((a,b),\mathbb{R}^n) \longrightarrow C((a,b),\mathbb{R}^n)$$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is homogeneous. Use linearity

$$L[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x}$$

$$L: C^1((a,b),\mathbb{R}^n) \longrightarrow C((a,b),\mathbb{R}^n)$$

 $C((a,b),\mathbb{R}^n) = \{\text{continuous functions from } (a,b) \text{ into } \mathbb{R}^n\}$ n = size of sys

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is homogeneous. Use linearity

$$L[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x}$$

$$L: C^1((a,b),\mathbb{R}^n) \longrightarrow C((a,b),\mathbb{R}^n)$$

 $C((a,b),\mathbb{R}^n) = \{\text{continuous functions from } (a,b) \text{ into } \mathbb{R}^n\}$ n = size of sys

 $C^1((a,b),\mathbb{R}^n) = \{\text{continuously differentiable functions from } (a,b) \text{ into } \mathbb{R}^n\}$

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is homogeneous. Use linearity

$$L[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x}$$

$$L: C^1((a,b),\mathbb{R}^n) \longrightarrow C((a,b),\mathbb{R}^n)$$

$$C((a,b),\mathbb{R}^n) = \{\text{continuous functions from } (a,b) \text{ into } \mathbb{R}^n\}$$
 $n = \text{size of sys}$

$$C^1((a,b),\mathbb{R}^n) = \{\text{continuously differentiable functions from } (a,b) \text{ into } \mathbb{R}^n\}$$

Corollary Set of solutions to a homogeneous system is a vector subspace of $C^1((a,b),\mathbb{R}^n)$.

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \quad a < t < b$$

then linear combinations of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ are also solutions.

Proof The system $\mathbf{x}' - \mathbf{P}(t)\mathbf{x} = \mathbf{0}$ is homogeneous. Use linearity

$$L[\mathbf{x}] = \mathbf{x}' - \mathbf{P}(t)\mathbf{x}$$

$$L: C^1((a,b),\mathbb{R}^n) \longrightarrow C((a,b),\mathbb{R}^n)$$

$$C((a,b),\mathbb{R}^n) = \{\text{continuous functions from } (a,b) \text{ into } \mathbb{R}^n\}$$
 $n = \text{size of sys}$

$$C^1((a,b),\mathbb{R}^n) = \{\text{continuously differentiable functions from } (a,b) \text{ into } \mathbb{R}^n\}$$

Corollary Set of solutions to a homogeneous system is a vector subspace of $C^1((a,b),\mathbb{R}^n)$.

Question \dim (solution space) = ?