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Example Find the general solution to the DE

y′′ + 4y′ + 4y = 8e−2t

Discussion

• Complementary solution yh(t) = c1e−2t + c2te−2t

• To solve given DE

� Reduction of order general solution y(t) = v(t)e−2t

� Variation of parameters general solution y(t) = c1(t)e−2t + c2(t)te−2t

� Undetermined coefficients particular solution yp(t) = t2Ae−2t
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• Non-linear F(t, y, y′, y′′) = 0 or y′′ = f (t, y, y′) (difficult)

• Linear (general case, difficult)

� DE P(t)y′′ + Q(t)y′ + R(t)y = G(t), a < t < b

� IVP


P(t)y′′ + Q(t)y′ + R(t)y = G(t), a < t < b

y(t0) = y0, y′(t0) = y′0

Consider

� DE y′′ + p(t)y′ + q(t)y = g(t), a < t < b

� IVP


y′′ + p(t)y′ + q(t)y = g(t), a < t < b

y(t0) = y0, y′(t0) = y′0

where p, q, g ∈ C(a, b) No formula for solution
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� Variation of parameters know complementary soln yh = c1y1(t) + c2y2(t)
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Chapter 3: First Order Systems

(1) E & U Theorem

(2) Linear Systems

(3) Homogeneous Systems with Constant Coefficients

• Elimination

• Matrix Exponential

• Eigenvalues Method

(4) Non-homogeneous Systems

• Undetermined Coefficients

• Variation of Parameters
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x′2 = F2(t, x1, . . . , xn)
...

x′n = Fn(t, x1, . . . , xn)

Solutions to the system in an open interval (a, b) expressed in the form


x1 = ϕ1(t)

x2 = ϕ2(t)
...

xn = ϕn(t),

a < t < b

for each i = 1, 2, . . . , n, ϕ′i(t) = Fi

(
t, ϕ1(t), ϕ2(t), . . . , ϕn(t)

)
∀ t ∈ (a, b)
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1st order system IVP

• First order system



x′1 = F1(t, x1, . . . , xn)

x′2 = F2(t, x1, . . . , xn)
...

x′n = Fn(t, x1, . . . , xn)

• Initial conditions



x1(t0) = x0
1

x2(t0) = x0
2

...

xn(t0) = x0
n

(
t0, x0

1, x
0
2, . . . , x0

n

)
∈ dom Fi for all i = 1, . . . , n
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y(n) = F(t, y, y′, . . . , y(n−1))

can be written as 1st order system.

• Put



x1 = y

x2 = y′

x3 = y′′

...

xn−1 = y(n−2)

xn = y(n−1)

• The nth order DE is equivalent to 

x′1 = x2

x′2 = x3

...

x′n−1 = xn

x′n = F(t, x1, x2, . . . , xn)
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9Vector Notation

Let fi : (a, b) −→ R (i = 1, . . . , n) be (real-valued) functions.

• Define f : (a, b) −→ Rn by

f(t) =



f1(t)
...

fn(t)


a < t < b,

f is called a vector-valued function (of one variable)

• Similarly, can define

� vector-valued functions of several variables.

� matrix-valued functions of one or several variables.

• � If all the fi’s are continuous, say that f is continuous.

� If all the fi’s are differentiable, say that f is differentiable.

Define derivative of f f′ : (a, b) −→ Rn f′(t) =



f ′1(t)
...

f ′n(t)
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Example Let v ∈ Rn and f : (a, b) −→ R a differentiable function.

Define x : (a, b) −→ Rn by

x(t) = f (t)v

Then x′(t) = f ′(t)v

Proof v =



v1

...

vn
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v1 f (t)
...

vn f (t)



Notation v =

[
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if n = 2k

→


cos t

− sin t

 as n→ ∞ soln to system IVP


x1 = cos t

x2 = − sin t

Solution to original IVP y(t) = cos t



17

First order Linear systems



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)





17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)

• If P is a constant matrix



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)

• If P is a constant matrix (all pi j’s are constant functions),



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)

• If P is a constant matrix (all pi j’s are constant functions), system (∗) is called

1st order linear system with constant coefficients



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)

• If P is a constant matrix (all pi j’s are constant functions), system (∗) is called

1st order linear system with constant coefficients

• If g1 = · · · = gn = 0, system (∗) is said to be homogeneous



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)

• If P is a constant matrix (all pi j’s are constant functions), system (∗) is called

1st order linear system with constant coefficients

• If g1 = · · · = gn = 0, system (∗) is said to be homogeneous x′ − P(t)x = 0



17

First order Linear systems each Fi “linear” in x1, x2, . . . , xn

x′1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),
...

x′n = pn1(t)x1 + · · · + pnn(t)xn + gn(t),

a < t < b

Put P(t) =
[
pi j(t)

]
n×n

g(t) =



g1(t)
...

gn(t)



Matrix notation x′ = P(t)x + g(t), a < t < b (∗)

• If P is a constant matrix (all pi j’s are constant functions), system (∗) is called

1st order linear system with constant coefficients

• If g1 = · · · = gn = 0, system (∗) is said to be homogeneous x′ − P(t)x = 0
otherwise, it is called non-homogeneous.
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x′ = P(t)x + g(t), a < t < b

x(t0) = x0.

where t0 ∈ (a, b) and x0 ∈ Rn.

Suppose P and g are continuous on (a, b), that is, pi j, gi ∈ C(a, b) for all i, j.

Then the IVP has a unique solution in (a, b).

Proof Modify proof for general E&U Theorem.

Corollary E&U Theorem for nth order linear IVP.

• In what follows, P and g are assumed to be continuous.
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Question dim
(
solution space

)
= ?


