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Example Find the general solution to the DE
V' + 4y +4y = 8e™¥
Discussion
o Complementary solution  y,(f) = cie™ + cpte™
e To solve given DE
o Reduction of order general solution y(r) = v(r)e

o Variation of parameters general solution y(¢) = c1()e ™" + co(t)te™

o Undetermined coefficients particular solution y,(7) = ?Ae %
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e Non-linear F(t,y,y’,y”") =0 ory” = f(t,y,y") (difficult)
e Linear (general case, difficult)

o DE P@)y” + Q@) + Rty = G(t), a<t<b

(

P@)y” + Q(t)y + R(t)y=G(t), a<t<b
o IVP <

k}’(fo) =yo0, Y(to) =y,
Consider

o DE y'+p@)y +qt)y=g@1), a<t<b

(
"+ )Y +qg(t)y=29(0), a<t<b
o IVP {y p@)y +q(®)y = g(t)

¥(70) = Yo, Y (to) =y,

where p,q,g € C(a,b) No formula for solution
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2nd Order Linear DE

e Homogeneous y” + p(t)y +qg(t)y =0 solution space dim= 2
¢ Constant coefficients ay”’ + by’ +cy =0 three cases
¢ Reduction of order  know solution y; (nowhere 0)
y(t) = v(0)y1(?)

general solution
W(y1.y) = Cel P04

e Non-homogeneous y” + p(2)y" + g(1)y = g(1) y(®) = yu(t) + y, (1)

. P,(t)e" sin 3t
¢ Undetermined coeff. ay” + by + cy = 1 form of y, ()

P,(t)e" cos Bt
\

o Variation of parameters  know complementary soln y;, = c;yi(¢) + cyy2(1)

general solution y = c(£)y1(¥) + c2(t)y2(t)

¢ Reduction of order  know solution y; (nowhere 0) to homo DE

general solution  y(¢) = v(¢)y(¢)
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Chapter 3: First Order Systems

(1) E & U Theorem
(2) Linear Systems

(3) Homogeneous Systems with Constant Coefficients
e Elimination
e Matrix Exponential

e Eigenvalues Method

(4) Non-homogeneous Systems

e Undetermined Coefficients

e Variation of Parameters
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First Order System (explicit form, n equations, n unknown functions)

xll — F](t,X],...,xn)
x, = Fot,x,...,x,)
\
L x;,l — Fl’l(tax19""xn)

Solutions to the system in an open interval (a, b) expressed in the form

x1 = ¢1()
Xa = ab)
3 a<t<b

foreachi=1.2,....n, ¢/(1) = Fi(t.oi(D).x(0).....0u(1)) V1€ (a,Db)



1st order system IVP

)
x’l — Fl(t,X],...,xn)
. xy, = Fot,xi,..., %)
e First order system 3

x;,/l — Fn(taxla-°°9xn)

xi(f)) = )

_ 0

XZ(IO) = X

e Initial conditions 3

xn(tO) — )C2



1st order system IVP

xp = Fit,xi,...,x)
. xy, = Fot,xi,..., %)
e First order system 3
x;,/l — Fn(taxla-°°9xn)
xi(f)) = )
_ 0
.. .. x2(to) = X,
e Initial conditions 3
xn(tO) — )C2

(to,x‘l),xg,...,xg)edomFi foralli=1,....n
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XT =)
e Put X =y
2 —
x3 — y//
<
Xop = Y0P
x, = oD
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Remark Every nth order DE in explicit form

Y =F(t,y,y,...,y" )

can be written as 1st order system.

X1 =y
o Put /
Xy =Y
x3 = )
3
Xn—1 — y(n—Z)
X, = y"b
e The nth order DE is equivalentto ( )
xl = X2
Xy, = X3
<
/ —
o1 = Hn
| 4 = Fx,x,
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Let f;: (a,b) — R (i = 1,...,n) be (real-valued) functions.
o Define f : (a,b) — R" by ()

f(r) = a<t<b,
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Vector Notation

Let f;: (a,b) — R (i = 1,...,n) be (real-valued) functions.
e Definef : (a,b) — R”" by Ffl(t)—
f(r) =| : a<t<b,
120

f is called a vector-valued function (of one variable)

e Similarly, can define
o vector-valued functions of several variables.

o matrix-valued functions of one or several variables.
e o If all the f;'s are continuous, say that f is continuous.

o If all the f;'s are differentiable, say that f is differentiable.
J1(@®

Define derivative of f " : (a,b) — R"  1'(r) =

(@)
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Example Let ve R" and f: (a,b) — R a differentiable function.

Define x: (a,b) — R" by

X(1) = f(O)v
Then x'(t) = f'(t)v
—Vl- —Vlf (t)—
Proof v =|: x() =]
Vi | Vi f (t)_
T
Notation v = [vl vn]

Notation  Write x(#) = vf(¢)

Example Letv € R”and A € R. Definex : R — R" by x(¢) = ve'’. Then
x'(¢) = vie!

Remark FormulavaldforveC"and1eC, x:R— C"
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Vector notation for 1st order system (IVP)

System

Put

9

X(?)

—Xl(f)—

EY0)

Fi(t, xg,...

FH(t, xq,. ..

F,.(t x,...

Init. cond.

\

x1(p)

x2(1p)

xn(tO)
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Vector notation for 1st order system (IVP)
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Vector notation for 1st order system (IVP)

xi — Fl(t’ X1 - - "-xn) xl(tO) = x(l)
x, = Ft,xy,...,x, X (t = x°
System <{ ? 2 31 ) Init. cond. { 2(fo) 2
\ x;l — Fn(ta -x17 st xn)a xn(tO) = xg
x1(0) Fi(t,%) X0
Put xt)=| : |, F(t,x) = : , x! =
xn(t) Fn(t, X) X2

e System can be written as x’ = F(z,x)

x = F@,x
e |VP (%)

x(fy) = x°
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Suppose F,,....F,, — ., , — ..,
PP : 0x1 0x, 0x1 0x;, 0x1
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Existence and Uniqueness Theorem for 1st order system IVP

x = F(,Xx)
Consider the IVP  «
x(f)) = xY
\
0F oF, oF, oF, oF,
Suppose Fy,....F,, — — .
PP : 0x1 0x, 0x1 0x;, 0x1
are continuous on a neighborhood of (tO, XN, x,(,f) where x° = [x(l’

Then in some neighborhood of t,, the IVP has a unique solution.

Proof Similar to that for 1st order IVP.
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