$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

can be written in differential form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

can be written in differential form

$$M(x, y) dx + N(x, y) dy = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

can be written in differential form

$$M(x, y) dx + N(x, y) dy = 0$$

Example The following 1st order DE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x\sin y}{y}$$

can be written as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

can be written in differential form

$$M(x, y) dx + N(x, y) dy = 0$$

Example The following 1st order DE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x\sin y}{y}$$

can be written as $x \sin y \, dx + y \, dy = 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

can be written in differential form

$$M(x, y) dx + N(x, y) dy = 0$$

Example The following 1st order DE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-x\sin y}{y}$$

can be written as $x \sin y \, dx + y \, dy = 0$

$$x dx + \frac{y}{\sin y} dy = 0$$
 (variables separated)

$$M(x) dx + N(y) dy = 0,$$

we say that the DE is *separable*.

$$M(x) dx + N(y) dy = 0,$$

we say that the DE is *separable*.

• Solution in implicit form
$$\int M(x) dx + \int N(y) dy = 0$$

$$M(x) dx + N(y) dy = 0,$$

we say that the DE is *separable*.

• Solution in implicit form
$$\int M(x) dx + \int N(y) dy = 0$$

Example Solve the following IVP

$$\begin{cases} y' = \frac{3x^2 + 2x + 1}{2(y+1)} \\ y(0) = 0 \end{cases}$$

Find the interval of validity of the solution.

$$M(x) dx + N(y) dy = 0,$$

we say that the DE is *separable*.

Solution in implicit form
$$\int M(x) dx + \int N(y) dy = 0$$

Example Solve the following IVP

$$\begin{cases} y' = \frac{3x^2 + 2x + 1}{2(y+1)} \\ y(0) = 0 \end{cases}$$

Find the interval of validity of the solution.

Note
$$f(x,y) = \frac{3x^2 + 2x + 1}{2(y+1)}$$
 and $f_y(x,y) = \frac{-(3x^2 + 2x + 1)}{2(y+1)^2}$

$$M(x) dx + N(y) dy = 0,$$

we say that the DE is *separable*.

• Solution in implicit form
$$\int M(x) dx + \int N(y) dy = 0$$

Example Solve the following IVP

$$\begin{cases} y' = \frac{3x^2 + 2x + 1}{2(y+1)} \\ y(0) = 0 \end{cases}$$

Find the interval of validity of the solution.

Note
$$f(x,y) = \frac{3x^2 + 2x + 1}{2(y+1)}$$
 and $f_y(x,y) = \frac{-(3x^2 + 2x + 1)}{2(y+1)^2}$ are continuous on $\{(x,y) \in \mathbb{R}^2 : y > -1\}$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition
$$(0+1)^2 = 0+0+0+C$$

$$2(y+1) dy = (3x^{2} + 2x + 1) dx$$

$$(y+1)^{2} = x^{3} + x^{2} + x + C$$
Initial condition
$$(0+1)^{2} = 0 + 0 + 0 + C$$

$$1 = C$$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition
$$(0+1)^2 = 0+0+0+C$$
$$1 = C$$

Thus
$$(y+1)^2 = x^3 + x^2 + x + 1$$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition
$$(0+1)^2 = 0+0+0+C$$
$$1 = C$$

Thus
$$(y+1)^2 = x^3 + x^2 + x + 1$$

 $y = -1 + \sqrt{x^3 + x^2 + x + 1}$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition
$$(0+1)^2 = 0+0+0+C$$
$$1 = C$$

Thus
$$(y+1)^2 = x^3 + x^2 + x + 1$$

 $y = -1 + \sqrt{x^3 + x^2 + x + 1}$

Initial condition, reject $y = -1 - \sqrt{x^3 + x^2 + x + 1}$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition

$$(0+1)^2 = 0+0+0+C$$

$$1 = C$$

Thus

$$(y+1)^2 = x^3 + x^2 + x + 1$$
$$y = -1 + \sqrt{x^3 + x^2 + x + 1}$$

Initial condition, reject $y = -1 - \sqrt{x^3 + x^2 + x + 1}$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition

$$(0+1)^2 = 0+0+0+C$$

$$1 = C$$

Thus

$$(y+1)^2 = x^3 + x^2 + x + 1$$
$$y = -1 + \sqrt{x^3 + x^2 + x + 1}$$

Initial condition, reject $y = -1 - \sqrt{x^3 + x^2 + x + 1}$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition

$$(0+1)^2 = 0+0+0+C$$

$$1 = C$$

Thus

$$(y+1)^2 = x^3 + x^2 + x + 1$$
$$y = -1 + \sqrt{x^3 + x^2 + x + 1}$$

Initial condition, reject $y = -1 - \sqrt{x^3 + x^2 + x + 1}$

$$\sqrt{x^3 + x^2 + x + 1} = \sqrt{(x+1)(x^2+1)}$$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition

$$(0+1)^2 = 0+0+0+C$$

$$1 = C$$

Thus

$$(y+1)^2 = x^3 + x^2 + x + 1$$
$$y = -1 + \sqrt{x^3 + x^2 + x + 1}$$

Initial condition, reject $y = -1 - \sqrt{x^3 + x^2 + x + 1}$

$$\sqrt{x^3 + x^2 + x + 1} = \sqrt{(x+1)(x^2+1)}$$
defined for $x \ge -1$

$$2(y+1) dy = (3x^2 + 2x + 1) dx$$
$$(y+1)^2 = x^3 + x^2 + x + C$$

Initial condition

$$(0+1)^2 = 0+0+0+C$$

$$1 = C$$

Thus

$$(y+1)^2 = x^3 + x^2 + x + 1$$
$$y = -1 + \sqrt{x^3 + x^2 + x + 1}$$

Initial condition, reject $y = -1 - \sqrt{x^3 + x^2 + x + 1}$

$$\sqrt{x^3 + x^2 + x + 1} = \sqrt{(x+1)(x^2 + 1)}$$
 defined for $x \ge -1$
$$y \to -1 \text{ as } x \to -1^+$$

$$y' + e^x y^2 = 0$$

$$y' + e^x y^2 = 0$$

Solution

• $y \equiv 0$ is a solution.

$$y' + e^x y^2 = 0$$

- $y \equiv 0$ is a solution.
- By Disjoint Graph Theorem, other solutions never vanish.

$$y' + e^x y^2 = 0$$

- $y \equiv 0$ is a solution.
- By Disjoint Graph Theorem, other solutions never vanish.
 To find other solutions

$$dy + e^x y^2 dx = 0$$

$$y' + e^x y^2 = 0$$

- $y \equiv 0$ is a solution.
- By Disjoint Graph Theorem, other solutions never vanish. To find other solutions

$$dy + e^x y^2 dx = 0$$

$$dy + e^x y^2 dx = 0$$
$$y^{-2} dy + e^x dx = 0$$

$$y' + e^x y^2 = 0$$

- $y \equiv 0$ is a solution.
- By Disjoint Graph Theorem, other solutions never vanish.
 To find other solutions

$$dy + e^{x}y^{2} dx = 0$$

$$y^{-2} dy + e^{x} dx = 0$$

$$-y^{-1} + e^{x} = C$$

$$y' + e^x y^2 = 0$$

- $y \equiv 0$ is a solution.
- By Disjoint Graph Theorem, other solutions never vanish.
 To find other solutions

$$dy + e^{x}y^{2} dx = 0$$

$$y^{-2} dy + e^{x} dx = 0$$

$$-y^{-1} + e^{x} = C$$

$$y = \frac{1}{e^{x} - C}$$

$$y' + e^x y^2 = 0$$

- $y \equiv 0$ is a solution.
- By Disjoint Graph Theorem, other solutions never vanish.
 To find other solutions

$$dy + e^{x}y^{2} dx = 0$$

$$y^{-2} dy + e^{x} dx = 0$$

$$-y^{-1} + e^{x} = C$$

$$y = \frac{1}{e^{x} - C}$$

Consider the following 1st order DE

$$M(x, y) dx + N(x, y) dy = 0$$

Consider the following 1st order DE

$$M(x, y) dx + N(x, y) dy = 0$$

Definition If there exists a C^1 -function F(x,y) on a region $\Omega \subset \mathbb{R}^2$ such that

$$\frac{\partial F}{\partial x} = M$$
 and $\frac{\partial F}{\partial y} = N$ $\forall (x, y) \in \Omega$

the DE is called an *exact equation* in Ω .

Consider the following 1st order DE

$$M(x, y) dx + N(x, y) dy = 0$$

Definition If there exists a C^1 -function F(x,y) on a region $\Omega \subset \mathbb{R}^2$ such that

$$\frac{\partial F}{\partial x} = M$$
 and $\frac{\partial F}{\partial y} = N$ $\forall (x, y) \in \Omega$

the DE is called an *exact equation* in Ω .

Terminology

• F(x, y) is called C^1 -function if F_x and F_y are continuous.

Consider the following 1st order DE

$$M(x, y) dx + N(x, y) dy = 0$$

Definition If there exists a C^1 -function F(x,y) on a region $\Omega \subset \mathbb{R}^2$ such that

$$\frac{\partial F}{\partial x} = M$$
 and $\frac{\partial F}{\partial y} = N$ $\forall (x, y) \in \Omega$

the DE is called an *exact equation* in Ω .

Terminology

- F(x, y) is called C^1 -function if F_x and F_y are continuous.
- A region Ω in \mathbb{R}^2 means a (nonempty) subset of \mathbb{R}^2 that is open and connected

Consider the following 1st order DE

$$M(x, y) dx + N(x, y) dy = 0$$

Definition If there exists a C^1 -function F(x,y) on a region $\Omega \subset \mathbb{R}^2$ such that

$$\frac{\partial F}{\partial x} = M$$
 and $\frac{\partial F}{\partial y} = N$ $\forall (x, y) \in \Omega$

the DE is called an *exact equation* in Ω .

Terminology

- F(x, y) is called C^1 -function if F_x and F_y are continuous.
- A region Ω in \mathbb{R}^2 means a (nonempty) subset of \mathbb{R}^2 that is open and connected (every two points in Ω can be joined by a polygon lying entirely in Ω).

• $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region

• $\{(x,y) \in \mathbb{R}^2 : y > 0\}$ is a region

- $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region
- $\{(x, y) \in \mathbb{R}^2 : x \neq 0\}$ is not a region

- $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region
- $\{(x, y) \in \mathbb{R}^2 : x \neq 0\}$ is not a region

- $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region
- $\{(x,y) \in \mathbb{R}^2 : x \neq 0\}$ is not a region
- $\{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ is a region

- $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region
- $\{(x, y) \in \mathbb{R}^2 : x \neq 0\}$ is not a region
- $\{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ is a region

- $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region
- $\{(x, y) \in \mathbb{R}^2 : x \neq 0\}$ is not a region
- $\{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ is a region

- $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ is a region
- $\{(x, y) \in \mathbb{R}^2 : x \neq 0\}$ is not a region
- $\{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ is a region

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Solution in implicit form F(x, y) = C

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Solution in implicit form F(x, y) = C

Remark If F_y is non-zero at (x_0, y_0) , by Implicit Function Theorem,

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Solution in implicit form F(x, y) = C

Remark If F_y is non-zero at (x_0, y_0) , by Implicit Function Theorem, in a nbd of x_0 , y can be expressed as a function of x.

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Solution in implicit form F(x, y) = C

Remark If F_y is non-zero at (x_0, y_0) , by Implicit Function Theorem, in a nbd of x_0 , y can be expressed as a function of x.

Note If F_y is non-zero at (x_0, y_0) , then

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Solution in implicit form F(x, y) = C

Remark If F_y is non-zero at (x_0, y_0) , by Implicit Function Theorem, in a nbd of x_0 , y can be expressed as a function of x.

Note If F_y is non-zero at (x_0, y_0) , then in a nbd of (x_0, y_0) , $N = F_y$ never vanishes.

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Solution in implicit form F(x, y) = C

Remark If F_y is non-zero at (x_0, y_0) , by Implicit Function Theorem, in a nbd of x_0 , y can be expressed as a function of x.

Note If F_y is non-zero at (x_0, y_0) , then in a nbd of (x_0, y_0) , $N = F_y$ never vanishes.

Can write DE in explicit form $\frac{dy}{dx} = \frac{-M(x,y)}{N(x,y)}$

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let
$$F(x, y) = x^2y$$
.

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let
$$F(x, y) = x^2y$$
.

For all
$$(x, y) \in \mathbb{R}^2$$
, $F_x(x, y) = 2xy$
 $F_y(x, y) = x^2$

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let
$$F(x, y) = x^2y$$
.

For all
$$(x, y) \in \mathbb{R}^2$$
, $F_x(x, y) = 2xy$
 $F_y(x, y) = x^2$

DE is exact in \mathbb{R}^2 . Rewrite as

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let $F(x, y) = x^2y$.

For all
$$(x, y) \in \mathbb{R}^2$$
, $F_x(x, y) = 2xy$
 $F_y(x, y) = x^2$

DE is exact in \mathbb{R}^2 . Rewrite as

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let $F(x, y) = x^2y$.

For all
$$(x, y) \in \mathbb{R}^2$$
, $F_x(x, y) = 2xy$
 $F_y(x, y) = x^2$

DE is exact in \mathbb{R}^2 . Rewrite as

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Implicit solution $x^2y = C$

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let $F(x, y) = x^2y$.

For all
$$(x, y) \in \mathbb{R}^2$$
, $F_x(x, y) = 2xy$
 $F_y(x, y) = x^2$

DE is exact in \mathbb{R}^2 . Rewrite as

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Implicit solution $x^2y = C$

• How to find F(x, y) ?

$$2xy\,\mathrm{d}x + x^2\,\mathrm{d}y = 0$$

Solution Let $F(x, y) = x^2y$.

For all
$$(x, y) \in \mathbb{R}^2$$
, $F_x(x, y) = 2xy$
 $F_y(x, y) = x^2$

DE is exact in \mathbb{R}^2 . Rewrite as

$$\frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial y} \, \mathrm{d}y = 0$$

Implicit solution $x^2y = C$

- How to find F(x, y) ?
- How to check exactness?

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

Explanation A simply connected region is a region that does not have any "hole".

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

Explanation A simply connected region is a region that does not have any "hole".

Example Rectangular regions and disks are simply connected.

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

Explanation A simply connected region is a region that does not have any "hole".

Example Rectangular regions and disks are simply connected.

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

Explanation A simply connected region is a region that does not have any "hole".

Example Rectangular regions and disks are simply connected.

Not-example Annuli are not simply connected.

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

Explanation A simply connected region is a region that does not have any "hole".

Example Rectangular regions and disks are simply connected.

Not-example Annuli are not simply connected.

$$M(x, y) dx + N(x, y) dy = 0$$

is exact in Ω iff $M_y(x,y) = N_x(x,y)$ for all $(x,y) \in \Omega$.

Explanation A simply connected region is a region that does not have any "hole". Or equivalently, every closed path in the region can be "shrunk" to a point.

Example Rectangular regions and disks are simply connected.

Not-example Annuli are not simply connected.

(1) A continuous function $\gamma : [a, b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

Explanation A simply connected region is a region that does not have any "hole", or equivalently, every closed path in the region can be "shrunk" to a point.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

Explanation A simply connected region is a region that does not have any "hole", or equivalently, every closed path in the region can be "shrunk" to a point.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma : [a, b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma : [a, b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma : [a, b] \longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

- (1) A continuous function $\gamma:[a,b]\longrightarrow \mathbb{R}^2$ is called a *path* in \mathbb{R}^2 .
- (2) The image of γ , that is, $\{\gamma(t): t \in [a,b]\}$ is called the *trace* of the path.
- (3) A path in Ω means a path such that its trace $\subset \Omega$.
- (4) If $\gamma(a) = \gamma(b)$, the path is said to be *closed*.

Explanation A simply connected region is a region that does not have any "hole", or equivalently, every closed path in the region can be "shrunk" to a point.

Remark In considering IVP, can take a rectangular region containing the initial point (t_0, y_0) . Exactness can be tested using above condition.

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$.

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

 (\longleftarrow) Fix a point (x_0, y_0) in Ω.

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

(\iff) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

(\leftarrow) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

where γ is a piecewise C^1 -path from (x_0, y_0) to (x, y) that lies entirely in Ω

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

(\leftarrow) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

where γ is a piecewise C^1 -path from (x_0, y_0) to (x, y) that lies entirely in Ω

• Integral is independent of the choice of γ

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

(\leftarrow) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

where γ is a piecewise C^1 -path from (x_0, y_0) to (x, y) that lies entirely in Ω

• Integral is independent of the choice of γ

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

 (\longleftarrow) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

where γ is a piecewise C^1 -path from (x_0, y_0) to (x, y) that lies entirely in Ω

• Integral is independent of the choice of γ

By Green's Thm
$$\int_{\gamma-\gamma_1} M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA$$

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

 (\longleftarrow) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

where γ is a piecewise C^1 -path from (x_0, y_0) to (x, y) that lies entirely in Ω

ullet Integral is independent of the choice of γ

By Green's Thm
$$\int_{\gamma-\gamma_1} M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA$$

The construction of F implies that (see Appendix B.1)

$$F_x = M$$
 and $F_y = N$

(\Longrightarrow) Suppose DE is exact in Ω , that is, $\exists C^1$ -function F such that in Ω , $F_x = M$ and $F_y = N$. Then in Ω ,

$$M_y = F_{xy}$$
 and $N_x = F_{yx}$.

Result follows because continuous mixed second partials are equal.

 (\longleftarrow) Fix a point (x_0, y_0) in Ω . Define a function F by

$$F(x,y) = \int_{\gamma} M(x,y) dx + N(x,y) dy$$

where γ is a piecewise C^1 -path from (x_0, y_0) to (x, y) that lies entirely in Ω

ullet Integral is independent of the choice of γ

By Green's Thm
$$\int_{\gamma-\gamma_1} M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA$$

The construction of F implies that (see Appendix B.1)

$$F_x = M$$
 and $F_y = N$
$$F(x + \Delta x, y) - F(x, y) = \int_{\text{horizontal path}} M \, dx + N \, dy$$

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in \mathbb{R}^2

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in \mathbb{R}^2 $\frac{\partial}{\partial y}(2xe^y + \cos x + \cos y) = 2xe^y - \sin y$

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in
$$\mathbb{R}^2$$

$$\frac{\partial}{\partial y} (2xe^y + \cos x + \cos y) = 2xe^y - \sin y$$
$$\frac{\partial}{\partial x} (x^2e^y - x\sin y - 1) = 2xe^y - \sin y$$

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in \mathbb{R}^2 $\frac{\partial}{\partial y} (2xe^y + \cos x + \cos y) = 2xe^y - \sin y$ $\frac{\partial}{\partial x} (x^2e^y - x\sin y - 1) = 2xe^y - \sin y$

• To find F such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in \mathbb{R}^2 $\frac{\partial}{\partial y}(2xe^y + \cos x + \cos y) = 2xe^y - \sin y$ $\frac{\partial}{\partial x}(x^2e^y - x\sin y - 1) = 2xe^y - \sin y$

• To find F such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$ $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in \mathbb{R}^2 $\frac{\partial}{\partial y} (2xe^y + \cos x + \cos y) = 2xe^y - \sin y$ $\frac{\partial}{\partial x} (x^2e^y - x\sin y - 1) = 2xe^y - \sin y$

• To find F such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$ $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 1 Define $F(x, y) = \int_{\gamma} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$

Example Solve the following DE

$$(2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy = 0$$

Solution

• DE is exact in \mathbb{R}^2 $\frac{\partial}{\partial y} (2xe^y + \cos x + \cos y) = 2xe^y - \sin y$ $\frac{\partial}{\partial x} (x^2e^y - x\sin y - 1) = 2xe^y - \sin y$

• To find F such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$ $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 1 Define
$$F(x,y) = \int_{\gamma} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$

$$(0,0) \qquad (x,0)$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where $\gamma = \gamma_1 + \gamma_2$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

$$F(x,y) = \int_{\gamma} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$
where $\gamma = \gamma_1 + \gamma_2$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \end{cases}$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$F(x,y) = \int_{\gamma} (2xe^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x\sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$
$$= \int_{\gamma_1} (2x e^y + \cos x + \cos y) dx + \int_{\gamma_2} (x^2 e^y - x \sin y - 1) dy$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$(0, 0) \qquad (x, 0)$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$

$$= \int_{\gamma_1} (2x e^y + \cos x + \cos y) dx + \int_{\gamma_2} (x^2 e^y - x \sin y - 1) dy$$

$$= \int_0^x (2t + \cos t + 1) dt + \int_0^x (2t + \cos t + 1) dt$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$(0, 0) \qquad (x, 0)$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$

$$= \int_{\gamma_1} (2x e^y + \cos x + \cos y) dx + \int_{\gamma_2} (x^2 e^y - x \sin y - 1) dy$$

$$= \int_0^x (2t + \cos t + 1) dt + \int_0^y (x^2 e^t - x \sin t - 1) dt$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$(0, 0)$$

$$(x, y)$$

$$(0, 0)$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2xe^y + \cos x + \cos y) dx + (x^2e^y - x\sin y - 1) dy$$

$$= \int_{\gamma_1} (2xe^y + \cos x + \cos y) dx + \int_{\gamma_2} (x^2e^y - x\sin y - 1) dy$$

$$= \int_0^x (2t + \cos t + 1) dt + \int_0^y (x^2e^t - x\sin t - 1) dt$$

$$= (x^2 + \sin x + x) + C$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$(0, 0) \qquad (x, 0)$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2xe^y + \cos x + \cos y) dx + (x^2e^y - x\sin y - 1) dy$$

$$= \int_{\gamma_1} (2xe^y + \cos x + \cos y) dx + \int_{\gamma_2} (x^2e^y - x\sin y - 1) dy$$

$$= \int_0^x (2t + \cos t + 1) dt + \int_0^y (x^2e^t - x\sin t - 1) dt$$

$$= (x^2 + \sin x + x) + ((x^2e^y + x\cos y - y) - (x^2 + x))$$

$$F(x,y) = \int_{\gamma} (2x e^{y} + \cos x + \cos y) dx + (x^{2}e^{y} - x \sin y - 1) dy$$

where
$$\gamma = \gamma_1 + \gamma_2$$

$$\begin{cases} \gamma_1 : [0, x] \longrightarrow \mathbb{R}^2 & \gamma_1(t) = (t, 0) \\ \gamma_2 : [0, y] \longrightarrow \mathbb{R}^2 & \gamma_2(t) = (x, t) \end{cases}$$

$$(0, 0)$$

$$(x, y)$$

$$(0, 0)$$

$$F(x,y) = \int_{\gamma_1 + \gamma_2} (2x e^y + \cos x + \cos y) dx + (x^2 e^y - x \sin y - 1) dy$$

$$= \int_{\gamma_1} (2x e^y + \cos x + \cos y) dx + \int_{\gamma_2} (x^2 e^y - x \sin y - 1) dy$$

$$= \int_0^x (2t + \cos t + 1) dt + \int_0^y (x^2 e^t - x \sin t - 1) dt$$

$$= (x^2 + \sin x + x) + ((x^2 e^y + x \cos y - y) - (x^2 + x))$$

$$= x^2 e^y + \sin x + x \cos y - y$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2xe^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2e^y - x\sin y - 1$

thod 2

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 2 From first condition
$$F(x, y)$$

ethod 2 From first condition
$$F(x, y) = \int (2x e^y + \cos x + \cos y) dx$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2xe^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2e^y - x\sin y - 1$

ethod 2 From first condition
$$F(x, y) = \int (2xe^y + \cos x + \cos y) dx$$

= $x^2e^y + \sin x + x\cos y +$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2xe^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2e^y - x\sin y - 1$

ethod 2 From first condition
$$F(x,y) = \int (2xe^{y} + \cos x + \cos y) dx$$
$$= x^{2}e^{y} + \sin x + x\cos y + h(y)$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 2 From first condition
$$F(x,y) = \int (2xe^y + \cos x + \cos y) dx$$
$$= x^2e^y + \sin x + x\cos y + h(y)$$

From 2nd cond.
$$\frac{\partial}{\partial y} \left(x^2 e^y + \sin x + x \cos y + h(y) \right) = x^2 e^y - x \sin y - 1$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 2 From first condition
$$F(x,y) = \int (2xe^y + \cos x + \cos y) dx$$
$$= x^2e^y + \sin x + x\cos y + h(y)$$

From 2nd cond.
$$\frac{\partial}{\partial y} \left(x^2 e^y + \sin x + x \cos y + h(y) \right) = x^2 e^y - x \sin y - 1$$
$$x^2 e^y + 0 - x \sin y + h'(y) = x^2 e^y - x \sin y - 1$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 2 From first condition
$$F(x,y) = \int (2xe^y + \cos x + \cos y) dx$$
$$= x^2e^y + \sin x + x\cos y + h(y)$$

From 2nd cond.
$$\frac{\partial}{\partial y} \left(x^2 e^y + \sin x + x \cos y + h(y) \right) = x^2 e^y - x \sin y - 1$$
$$x^2 e^y + 0 - x \sin y + h'(y) = x^2 e^y - x \sin y - 1$$
$$h'(y) = -1$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 2 From first condition
$$F(x, y) = \int (2x e^y + \cos x + \cos y) dx$$

= $x^2 e^y + \sin x + x \cos y + h(y)$

From 2nd cond.
$$\frac{\partial}{\partial y} \left(x^2 e^y + \sin x + x \cos y + h(y) \right) = x^2 e^y - x \sin y - 1$$
$$x^2 e^y + 0 - x \sin y + h'(y) = x^2 e^y - x \sin y - 1$$
$$h'(y) = -1$$
$$take \qquad h(y) = -y$$

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2xe^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2e^y - x\sin y - 1$

ethod 2 From first condition
$$F(x, y) = \int (2xe^y + \cos x + \cos y) dx$$

= $x^2e^y + \sin x + x\cos y + h(y)$

From 2nd cond.
$$\frac{\partial}{\partial y} \left(x^2 e^y + \sin x + x \cos y + h(y) \right) = x^2 e^y - x \sin y - 1$$
$$x^2 e^y + 0 - x \sin y + h'(y) = x^2 e^y - x \sin y - 1$$
$$h'(y) = -1$$
$$take \qquad h(y) = -y$$

 $F(x, y) = x^2 e^y + \sin x + x \cos y - y$ Obtain

To find
$$F$$
 such that $\frac{\partial F}{\partial x} = 2x e^y + \cos x + \cos y$
 $\frac{\partial F}{\partial y} = x^2 e^y - x \sin y - 1$

ethod 2 From first condition
$$F(x,y) = \int (2xe^y + \cos x + \cos y) dx$$
$$= x^2e^y + \sin x + x\cos y + h(y)$$

From 2nd cond.
$$\frac{\partial}{\partial y} \left(x^2 e^y + \sin x + x \cos y + h(y) \right) = x^2 e^y - x \sin y - 1$$
$$x^2 e^y + 0 - x \sin y + h'(y) = x^2 e^y - x \sin y - 1$$
$$h'(y) = -1$$
$$take \qquad h(y) = -y$$

 $F(x, y) = x^2 e^y + \sin x + x \cos y - y$ Obtain

Implicit solution to the DE $x^2e^y + \sin x + x\cos y - y = C$.

Integrating Factors

For non-exact DE

$$M(x,y) dx + N(x,y) dy = 0$$
(1)

where M, N, M_y, N_x are continuous in a region Ω .

Integrating Factors

For non-exact DE

$$M(x, y) dx + N(x, y) dy = 0$$
(1)

where M, N, M_y, N_x are continuous in a region Ω .

• Try to find a function $\mu(x,y)$ (never vanishes on Ω) such that

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$
 (2)

is exact in Ω .

Integrating Factors

For non-exact DE

$$M(x, y) dx + N(x, y) dy = 0$$
(1)

where M, N, M_y, N_x are continuous in a region Ω .

• Try to find a function $\mu(x,y)$ (never vanishes on Ω) such that

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$
 (2)

is exact in Ω .

• Such a function μ is called an *integrating factor* for (1) in Ω .

$$y\,\mathrm{d}x - x\,\mathrm{d}y = 0$$

$$y\,\mathrm{d}x - x\,\mathrm{d}y = 0$$

Not exact in any region

$$y\,\mathrm{d}x - x\,\mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

$$y \, \mathrm{d}x - x \, \mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

The following are integrating factors.

$$\phi \ \mu(x,y) = \mu(x) = \frac{1}{x^2}$$

$$\phi \ \mu(x,y) = \frac{1}{x^2 + y^2}$$

$$y \, \mathrm{d}x - x \, \mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

The following are integrating factors.

$$\phi \ \mu(x,y) = \mu(x) = \frac{1}{x^2} \quad \text{in } \{(x,y) : x > 0\} \text{ and also in } \{(x,y) : x < 0\}$$

$$\phi \ \mu(x,y) = \frac{1}{x^2 + y^2}$$

$$y \, \mathrm{d}x - x \, \mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

The following are integrating factors.

$$\phi \ \mu(x,y) = \mu(x) = \frac{1}{x^2} \quad \text{in } \{(x,y) : x > 0\} \text{ and also in } \{(x,y) : x < 0\}$$

Check Multiply DE by
$$\mu$$
 $\frac{y}{x^2} dx - \frac{1}{x} dy = 0$

$$\phi \ \mu(x,y) = \frac{1}{x^2 + y^2}$$

$$y \, \mathrm{d}x - x \, \mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

The following are integrating factors.

$$\phi \ \mu(x,y) = \mu(x) = \frac{1}{x^2} \quad \text{in } \{(x,y) : x > 0\} \text{ and also in } \{(x,y) : x < 0\}$$

Check Multiply DE by μ $\frac{y}{x^2} dx - \frac{1}{x} dy = 0$

$$\frac{y}{x^2} \, \mathrm{d}x - \frac{1}{x} \, \mathrm{d}y = 0$$

$$\left(\frac{y}{x^2}\right)_y = \frac{1}{x^2},$$

$$\phi \ \mu(x,y) = \frac{1}{x^2 + y^2}$$

$$y \, \mathrm{d}x - x \, \mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

The following are integrating factors.

$$\phi \ \mu(x,y) = \mu(x) = \frac{1}{x^2} \quad \text{in } \{(x,y) : x > 0\} \text{ and also in } \{(x,y) : x < 0\}$$

Check Multiply DE by μ $\frac{y}{x^2} dx - \frac{1}{x} dy = 0$

$$\left(\frac{y}{x^2}\right)_y = \frac{1}{x^2}, \qquad \left(\frac{-1}{x}\right)_x = \frac{1}{x^2}$$

$$\phi \ \mu(x,y) = \frac{1}{x^2 + y^2}$$

$$y \, \mathrm{d}x - x \, \mathrm{d}y = 0$$

Not exact in any region

$$\frac{\partial}{\partial y}y = 1$$

$$\frac{\partial}{\partial x}(-x) = -1$$

The following are integrating factors.

$$\phi \ \mu(x,y) = \mu(x) = \frac{1}{x^2} \quad \text{in } \{(x,y) : x > 0\} \text{ and also in } \{(x,y) : x < 0\}$$

Check Multiply DE by μ $\frac{y}{x^2} dx - \frac{1}{x} dy = 0$

$$\left(\frac{y}{x^2}\right)_y = \frac{1}{x^2}, \qquad \left(\frac{-1}{x}\right)_x = \frac{1}{x^2}$$

 $\phi \ \mu(x,y) = \frac{1}{x^2 + y^2}$ in any simply connected region not containing (0,0)

continue Consider non-exact DE (in a simply connected region Ω)

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

continue Consider non-exact DE (in a simply connected region Ω)

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

Need

$$(\mu M)_y = (\mu N)_x$$

continue Consider non-exact DE (in a simply connected region Ω)

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

Need

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

$$(\mu M)_y = (\mu N)_x$$

$$\mu M_y + \mu_y M = \mu N_x + N\mu_x$$

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

$$(\mu M)_y = (\mu N)_x$$

$$\mu M_y + \mu_y M = \mu N_x + N\mu_x$$

$$M\mu_y - N\mu_x + (M_y - N_x)\mu = 0$$
(*)

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

Need

$$(\mu M)_{y} = (\mu N)_{x}$$

$$\mu M_{y} + \mu_{y} M = \mu N_{x} + N \mu_{x}$$

$$M \mu_{y} - N \mu_{x} + (M_{y} - N_{x}) \mu = 0$$
(*)

 μ is an integrating factor for (3) in Ω iff in Ω , μ never vanishes and satisfies (*).

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

Need

$$(\mu M)_{y} = (\mu N)_{x}$$

$$\mu M_{y} + \mu_{y} M = \mu N_{x} + N \mu_{x}$$

$$M \mu_{y} - N \mu_{x} + (M_{y} - N_{x}) \mu = 0$$
(*)

 μ is an integrating factor for (3) in Ω iff in Ω , μ never vanishes and satisfies (*).

• Some DE's have integrating factors in the form $\mu = \mu(x)$ or $\mu = \mu(y)$.

$$M(x, y) dx + N(x, y) dy = 0$$
(3)

Want to find μ such that the following is exact in Ω

$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$

Need

$$(\mu M)_{y} = (\mu N)_{x}$$

$$\mu M_{y} + \mu_{y} M = \mu N_{x} + N \mu_{x}$$

$$M \mu_{y} - N \mu_{x} + (M_{y} - N_{x}) \mu = 0$$
(*)

 μ is an integrating factor for (3) in Ω iff in Ω , μ never vanishes and satisfies (*).

- Some DE's have integrating factors in the form $\mu = \mu(x)$ or $\mu = \mu(y)$.
- Discuss the case $\mu = \mu(x)$.

• Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$\left[M(x,y)\mu(x)\right]_{y} = \left[N(x,y)\mu(x)\right]_{x}$$

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$
$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$
(4)

• Thus in Ω , $\frac{M_y - N_x}{N}$ is a function of x only.

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$
(4)

• Thus in Ω , $\frac{M_y - N_x}{N}$ is a function of x only.

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$
(4)

• Thus in Ω , $\frac{M_y - N_x}{N}$ is a function of x only.

Sufficiency

• Let H(x) be a primitive of $\frac{M_y - N_x}{N}$ (need M_y , N_x and N continuous)

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$
(4)

• Thus in Ω , $\frac{M_y - N_x}{N}$ is a function of x only.

- Let H(x) be a primitive of $\frac{M_y N_x}{N}$ (need M_y , N_x and N continuous)
- Let $\mu(x) = e^{H(x)}$. Then

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$
(4)

• Thus in Ω , $\frac{M_y - N_x}{N}$ is a function of x only.

- Let H(x) be a primitive of $\frac{M_y N_x}{N}$ (need M_y , N_x and N continuous)
- Let $\mu(x) = e^{H(x)}$. Then $\frac{\mu'}{\mu} = \frac{e^{H(x)}H'(x)}{e^{H(x)}} = H'(x)$

- Suppose $\mu(x)$ is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.
- Then

$$[M(x,y)\mu(x)]_{y} = [N(x,y)\mu(x)]_{x}$$

$$M_{y}\mu + 0 = N_{x}\mu + N\mu'$$

$$(M_{y} - N_{x})\mu = N\mu'$$

$$\frac{M_{y} - N_{x}}{N} = \frac{\mu'}{\mu}$$
(4)

• Thus in Ω , $\frac{M_y - N_x}{N}$ is a function of x only.

- Let H(x) be a primitive of $\frac{M_y N_x}{N}$ (need M_y , N_x and N continuous)
- Let $\mu(x) = e^{H(x)}$. Then $\frac{\mu'}{\mu} = \frac{e^{H(x)}H'(x)}{e^{H(x)}} = H'(x)$
- μ is a solution to (4), thus integrating factor for the DE.