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Example The following 1st order DE
dy —xsiny

dx y
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xdx + L dy=0 (variables separated)
sin 'y
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, 3x*+2x+1
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Example Solve the following DE
Yy +e*y? =0
Solution
e y =0is a solution.
e By Disjoint Graph Theorem, other solutions never vanish.

To find other solutions

dy +e*y?’dx = 0

y2dy+e‘dx = )
1 0.5
—yl+er = C -2
1 4
y =

0.
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Definition If there exists a C'-function F(x,y) on a region Q c R? such that

oF oF
— =M and — =N V(,X,y)EQ
0x oy

the DE is called an exact equation in Q.

Terminology

o F(x,y)is called C'-function if F, and F, are continuous.

o A region Qin R?> means a (nonempty) subset of R? that is open and connected
(every two points in ) can be joined by a polygon lying entirely in Q).
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Example Solve the DE

2xydx + x*dy =0
Solution  Let F(x,y) = x*y.

Forall (x,y) e R?, Fux,y) = 2xy
Fy(x,y) = X2
DE is exact in R%. Rewrite as
OF OF
—dx+—dy=0
0x * Oy Y

Implicit solution x*y = C

e How to find F(x,y) ?

e How to check exactness”?
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Definition

(1) A continuous function v : [a, b] — R? is called a path in R.

(2) The image of v, that is, {y(¢) : t € [a, b]} is called the frace of the path.
(3) A path in Q means a path such that its trace c Q.

(4) Ify(a) = y(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,
or equivalently, every closed path in the region can be “shrunk” to a point.
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'''''

~~~~~
------

Remark In considering IVP, can take a rectangular region containing the initial
point (7o, yo). Exactness can be tested using above condition.
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F, = N. Thenin Q,

M,=F, and  N,=F,.

Result follows because continuous mixed second partials are equal.

(&) Fix a point (xo,yp) in 2. Define a function F by
F(x,y) = fM(x,y)dHN(x,y) dy
Y

where v is a piecewise C'-path from (xy, yo) to (x,y)
that lies entirely in Q

e Integral is independent of the choice of y

ON oM
By Green’s Thm de+Ndy ff( )
dy

y—y
e The construction of F |mpl|es that (see Appendix B.1)

FF=M and F,=N F(x+Ax,y) - F(x,y) = | M dx+ Ndy
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e The following are integrating factors.

o u(x,y) = u(x) = é in{(x,y): x>0}andalso in {(x,y): x <0}

1
Check  Multiply DEbyu = dx——dy =0
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(y)_l “1y 1
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|

in any simply connected region not containing (0, 0)
X2+ y?

o u(x,y) =
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continue  Consider non-exact DE (in a simply connected region Q)

M(x,y)dx + N(x,y)dy =0

Want to find u such that the following is exact in Q

pu(x, Y)M(x,y)dx + u(x, y)N(x,y)dy = 0
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Consider non-exact DE (in a simply connected region Q)

M(x,y)dx+ N(x,y)dy =0

Want to find u such that the following is exact in Q

Need

pu(x, Y)M(x,y)dx + u(x, y)N(x,y)dy = 0

(uM),
UM, + u,M
M/ly _ N,ux + (My - Nx):u

(UN)
UN + N,
0

(*)

17



17
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continue  Consider non-exact DE (in a simply connected region Q)

M(x,y)dx + N(x,y)dy =0 (3)
Want to find u such that the following is exact in Q
p(x, Y)M(x,y) dx + u(x, y)N(x,y)dy = 0
Need M)y, = (uN),
UM, + u,M =  uNy + Nu,
Muy, — Ny, + (My — Nou = 0 (*)
u is an integrating factor for (3) in Q iff in Q, u never vanishes and satisfies (x).

e Some DE’s have integrating factors in the form u = u(x) or u = u(y).

e Discuss the case u = u(x).
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Necessary condition for u = u(x)
e Suppose u(x) is integrating factor in Q for M(x,y)dx + N(x,y)dy = 0.

e Then
(M ype)| = [Ny

Myu+0 N u+ Ny

(My—Nu = Ny

M, — N,
N

8
u

M,— N, ,
Is a function of x only.

e Thusin Q,

Sufficiency
M, — Ny

e Let H(x) be a primitive of (need M,, N, and N continuous)

/ H(x)H/
o Letu(x) =ef™. Then H_Z W _ H'(x)
u eH(x)

e u is a solution to (4), thus integrating factor for the DE.
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