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First Order Nonlinear DE

dy
dx

= f (x, y)

can be written in differential form

M(x, y) dx + N(x, y) dy = 0

Example The following 1st order DE

dy
dx

=
−x sin y

y

can be written as x sin y dx + y dy = 0

x dx +
y

sin y
dy = 0 (variables separated)
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Definition If a DE can be written in the form

M(x) dx + N(y) dy = 0,

we say that the DE is separable.

• Solution in implicit form
∫

M(x) dx +

∫
N(y) dy = 0

Example Solve the following IVP

y′ =
3x2 + 2x + 1

2(y + 1)

y(0) = 0

Find the interval of validity of the solution.

Note f (x, y) =
3x2 + 2x + 1

2(y + 1)
and fy(x, y) =

−(3x2 + 2x + 1)
2(y + 1)2 are continuous on

{(x, y) ∈ R2 : y > −1}
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2(y + 1) dy = (3x2 + 2x + 1) dx

(y + 1)2 = x3 + x2 + x + C

Initial condition (0 + 1)2 = 0 + 0 + 0 + C

1 = C
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√

x3 + x2 + x + 1
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1

-1

-2

-3

Interval of validity (−1,∞)
√

x3 + x2 + x + 1 =
√

(x + 1)(x2 + 1)

defined for x ≥ −1

y→ −1 as x→ −1+
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Exact Equations

Consider the following 1st order DE

M(x, y) dx + N(x, y) dy = 0

Definition If there exists a C1-function F(x, y) on a region Ω ⊂ R2 such that

∂F
∂x

= M and
∂F
∂y

= N ∀ (x, y) ∈ Ω

the DE is called an exact equation in Ω.

Terminology

• F(x, y) is called C1-function if Fx and Fy are continuous.

• A region Ω in R2 means a (nonempty) subset of R2 that is open and connected

(every two points in Ω can be joined by a polygon lying entirely in Ω).
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Suppose M(x, y) dx + N(x, y) dy = 0 is exact. DE can be written as

∂F
∂x

dx +
∂F
∂y

dy = 0

Solution in implicit form F(x, y) = C

Remark If Fy is non-zero at (x0, y0), by Implicit Function Theorem,

in a nbd of x0, y can be expressed as a function of x.

Note If Fy is non-zero at (x0, y0), then

in a nbd of (x0, y0), N = Fy never vanishes.

Can write DE in explicit form
dy
dx

=
−M(x, y)
N(x, y)
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Example Solve the DE

2xy dx + x2 dy = 0

Solution Let F(x, y) = x2y.

For all (x, y) ∈ R2, Fx(x, y) = 2xy

Fy(x, y) = x2

DE is exact in R2. Rewrite as
∂F
∂x

dx +
∂F
∂y

dy = 0

Implicit solution x2y = C

• How to find F(x, y) ?

• How to check exactness?



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.

Explanation A simply connected region is a region that does not have any “hole”.



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.

Explanation A simply connected region is a region that does not have any “hole”.

Example Rectangular regions and disks are simply connected.



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.

Explanation A simply connected region is a region that does not have any “hole”.

Example Rectangular regions and disks are simply connected.



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.

Explanation A simply connected region is a region that does not have any “hole”.

Example Rectangular regions and disks are simply connected.

Not-example Annuli are not simply connected.



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.

Explanation A simply connected region is a region that does not have any “hole”.

Example Rectangular regions and disks are simply connected.

Not-example Annuli are not simply connected.



9

Theorem Suppose Ω is a simply connected region in R2 and M,N,My,Nx are

continuous functions on Ω. Then the DE

M(x, y) dx + N(x, y) dy = 0

is exact in Ω iff My(x, y) = Nx(x, y) for all (x, y) ∈ Ω.

Explanation A simply connected region is a region that does not have any “hole”.

Or equivalently, every closed path in the region can be “shrunk” to a point.

Example Rectangular regions and disks are simply connected.

Not-example Annuli are not simply connected.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.

(3) A path in Ω means a path such that its trace ⊂ Ω.

(4) If γ(a) = γ(b), the path is said to be closed.

Explanation A simply connected region is a region that does not have any “hole”,

or equivalently, every closed path in the region can be “shrunk” to a point.



10

Definition

(1) A continuous function γ : [a, b] −→ R2 is called a path in R2.

(2) The image of γ, that is, {γ(t) : t ∈ [a, b]} is called the trace of the path.
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(4) If γ(a) = γ(b), the path is said to be closed.
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Remark In considering IVP, can take a rectangular region containing the initial

point (t0, y0). Exactness can be tested using above condition.
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∫
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= x2ey + sin x + x cos y + h(y)
where h is a function of y.

From 2nd cond.
∂

∂y

(
x2ey + sin x + x cos y + h(y)

)
= x2ey − x sin y − 1

x2ey + 0 − x sin y + h′(y) = x2ey − x sin y − 1

h′(y) = −1

take h(y) = −y

Obtain F(x, y) = x2ey + sin x + x cos y − y

Implicit solution to the DE x2ey + sin x + x cos y − y = C.
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• Try to find a function µ(x, y) (never vanishes on Ω) such that

µ(x, y)M(x, y) dx + µ(x, y)N(x, y) dy = 0 (2)

is exact in Ω.

• Such a function µ is called an integrating factor for (1) in Ω.
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Example Consider the DE

y dx − x dy = 0

• Not exact in any region
∂

∂y
y = 1

∂
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(−x) = −1

• The following are integrating factors.

� µ(x, y) = µ(x) =
1
x2 in {(x, y) : x > 0} and also in {(x, y) : x < 0}

Check Multiply DE by µ
y
x2 dx − 1

x
dy = 0

( y
x2

)
y

=
1
x2 ,

(−1
x

)

x
=

1
x2

� µ(x, y) =
1

x2 + y2 in any simply connected region not containing (0, 0)
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M(x, y) dx + N(x, y) dy = 0 (3)

Want to find µ such that the following is exact in Ω

µ(x, y)M(x, y) dx + µ(x, y)N(x, y) dy = 0

Need (µM)y = (µN)x

µMy + µyM = µNx + Nµx

Mµy − Nµx + (My − Nx)µ = 0 (∗)
µ is an integrating factor for (3) in Ω iff in Ω, µ never vanishes and satisfies (∗).

• Some DE’s have integrating factors in the form µ = µ(x) or µ = µ(y).

• Discuss the case µ = µ(x).
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Necessary condition for µ = µ(x)

• Suppose µ(x) is integrating factor in Ω for M(x, y) dx + N(x, y) dy = 0.

• Then [
M(x, y)µ(x)

]
y

=
[
N(x, y)µ(x)

]
x

My µ + 0 = Nx µ + Nµ′

(My − Nx)µ = Nµ′

My − Nx

N
=

µ′

µ
(4)

• Thus in Ω,
My − Nx

N
is a function of x only.

Sufficiency

• Let H(x) be a primitive of
My − Nx

N
(need My, Nx and N continuous)

• Let µ(x) = eH(x). Then
µ′

µ
=

eH(x)H′(x)
eH(x) = H′(x)

• µ is a solution to (4), thus integrating factor for the DE.


