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Rule 3: (Power Rule)
d
dx

xr = rxr−1

provided that xr−1 is defined, where r is a fixed real number.

Proof (for the case where r = n is a positive integer)

Formula for expanding (x + h)n

(x + h)2 = x2 + 2xh + h2

(x + h)3 = x3 + 3x2h + 3xh2 + h3
Show Pascal triangle

...

(x + h)n = xn + nxn−1h + ( )xn−2h2 + · · · + ( )xhn−1 + hn

where missing numbers are constants depending on n and the position
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General case, use logarithmic differentiation (Chapter 8).
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d
dx

(
f (x)g(x)

)
= f (x) · d

dx
g(x) + g(x) · d

dx
f (x)

Proof Put F(x) = f (x)g(x).

d
dx

(
f (x)g(x)

)
=

d
dx

F(x)
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h→0
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h

= lim
h→0
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Trick – subtract and add f (x + h)g(x) in the numerator:
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Fact If f is differentiable, then it is continuous.
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Example Let F(x) = (3x2 − 5)(x3 − 5x + 1). Find F′(x).

Solution Consider F as a product of two functions

F′(x) = (3x2 − 5)
d
dx

(x3 − 5x + 1) + (x3 − 5x + 1)
d
dx

(3x2 − 5)

= (3x2 − 5)(3x2 − 5) + (x3 − 5x + 1)(6x)

...

= 15x4 − 60x2 + 6x + 25

Alternative Method Expand

F(x) = · · · · · ·
= 3x5 − 20x3 + 3x2 + 25x − 5

and then differentiate term by term.
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d
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[
f (x)
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=
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Proof Similar to the proof of the product rule.
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(
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g

)
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g2
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Example Let F(x) =
x2 + 3x − 4

2x + 1
. Find F′(x).

Solution By quotient rule:

F′(x) =
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d
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x2 + 3x − 4

2x + 1
. Find F′(x).

Solution By quotient rule:

F′(x) =

(2x + 1)
d
dx

(x2 + 3x − 4) − (x2 + 3x − 4)
d
dx

(2x + 1)

(2x + 1)2

=
(2x + 1)(2x + 3 − 0) − (x2 + 3x − 4)(2 + 0)

(2x + 1)2
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Example Let F(x) =
x2 + 3x − 4

2x + 1
. Find F′(x).

Solution By quotient rule:

F′(x) =

(2x + 1)
d
dx

(x2 + 3x − 4) − (x2 + 3x − 4)
d
dx

(2x + 1)

(2x + 1)2

=
(2x + 1)(2x + 3 − 0) − (x2 + 3x − 4)(2 + 0)

(2x + 1)2

...

=
2x2 + 2x + 11

(2x + 1)2
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� Quotient rule:
(

f
g

)′
=

g f ′ − f g′

g2
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(1) f (x) = (x2 + 5)30

(2) f (x) =
√

x2 + 5

Remark

• For (1), can expand and then differentiate term by term (if you have patience).

• However, this doesn’t work for (2).

• Note that both functions are in the form

x 7→ (x2 + 5)r

• Can be considered as composition of two functions

x 7→ (x2 + 5) 7→ (x2 + 5)r

• In Chapter 9, will discuss the chain rule.
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Higher-Order Derivatives

• Let f be a “nice” function.

The derivative of f (denoted by f ′) is also a function.

• If we differentiate f ′, the resulting function is called the second derivative of

f , denoted by f ′′.

• Repeat this process, get the third derivative, the fourth derivative, etc.

These are called higher-order derivatives.

Example f (x) = x4

f ′(x) =
d
dx

x4 = 4x3

f ′′(x) =
d
dx

4x3 = 12x2
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Solution Differentiate term by term:

f ′(x) =
d
dx

(5x3 − 2x2 + 6x + 1)

= 15x2 − 4x + 6

f ′′(x) =
d
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(15x2 − 4x + 6)

= 30x − 4

f ′′′(x) =
d
dx

(30x − 4)

= 30

f (4)(x) = 0

f (n)(x) = 0 for n ≥ 4
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x3 − 1

x
. Find f ′(x), f ′′(x) and f ′′′(x).

Solution Rewrite f (x) = x2 − x−1.

Differentiating f ′(x) =
d
dx

(x2 − x−1)

= 2x − (−1)x−2

= 2x + x−2

f ′′(x) =
d
dx

(2x + x−2)

= 2 + (−2)x−3 = 2 − 2x−3

f ′′′(x) =
d
dx

(2 − 2x−3)

= −2 · (−3)x−4 = 6x−4

Exercise Guess a formula for f (n)(x). Involves n!, see supplementary notes



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning

Physical meaning



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

Physical meaning



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of slope (convexity)

Physical meaning



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

• dy
dx

is velocity



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

• dy
dx

is velocity

Example Problem 1 in Chapter 3, s = t2, velocity at t = 2 ?



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

• dy
dx

is velocity

Example Problem 1 in Chapter 3, s = t2, velocity at t = 2 ?

s′(t) =
d
dt

t2 = 2t, ∴ s′(2) = 4



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

• dy
dx

is velocity

Example Problem 1 in Chapter 3, s = t2, velocity at t = 2 ?

s′(t) =
d
dt

t2 = 2t, ∴ s′(2) = 4

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of velocity with respect to time,



16

Rate of Change
dy
dx

is the rate of change of y with respect to x.

Geometric meaning y = f (x) represents a curve in the xy-plane:

• dy
dx

is slope

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

• dy
dx
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Example Problem 1 in Chapter 3, s = t2, velocity at t = 2 ?

s′(t) =
d
dt

t2 = 2t, ∴ s′(2) = 4

• d2y
dx2 =

d
dx

(
dy
dx

)
is rate of change of velocity with respect to time,

that is, acceleration
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=
d
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(x3 − 2x2 + 3x − 7)

= 3x2 − 2 · 2x + 3 · 1 − 0

= 3x2 − 4x + 3

slope at A =
dy
dx

∣∣∣∣∣
x=2

= 3(22) − 4(2) + 3

= 7

Equation for tangent line at A y − (−1) = 7(x − 2)

7x − y − 15 = 0 general linear form
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∣∣∣
x=−1

= 4
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Example Find the vertex of the parabola y = −x2 − 2x + 3.

Solution Slope at vertex is 0

dy
dx

=
d
dx

(−x2 − 2x + 3)

= −2x − 2 · 1 + 0

= −2x − 2

Solving
dy
dx

= 0, −2x − 2 = 0

x = −1 x-coordinate of vertex

y-coordinate of vertex = −x2 − 2x + 3
∣∣∣
x=−1

= 4

The vertex is (−1, 4)


