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provided that x~' is defined, where r is a fixed real number.

Proof (for the case where r = n is a positive integer)

Formula for expanding (x + h)"

(x + h)?

(x + h)°

(x + h)"

xr

rx

r—1

x>+ 2xh + W

x4+ 3x%h+3xh> + WP

Show Pascal triangle

X+ OX 7R 4+ Oxh + R

where missing numbers are constants depending on n and the position
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General case, use logarithmic differentiation (Chapter 8).
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Fact |If f is differentiable, then it is continuous.



Example Let F(x) = 3x*> = 5)(x° = 5x + 1). Find F’(x).



Example Let F(x) = 3x*> = 5)(x° = 5x + 1). Find F’(x).

Solution  Consider F as a product of two functions



Example Let F(x) = 3x*> = 5)(x° = 5x + 1). Find F’(x).

Solution  Consider F as a product of two functions

F'(x) = GBX=-5—=5x+D+(>=5x+1)—Bx*-5)



Example Let F(x) = 3x*> = 5)(x° = 5x + 1). Find F’(x).

Solution  Consider F as a product of two functions
F'(x) = Bx*=5)—(=5x+D+x —=5x+1)—(3x*—5)

= Bx*=50Bx* =5+ =5x+ 1)(6x)



Example Let F(x) = 3x*> = 5)(x° = 5x + 1). Find F’(x).

Solution  Consider F as a product of two functions
F'(x) = Bx*=5)—(=5x+D+x —=5x+1)—(3x*—5)

= Bx*=50Bx* =5+ =5x+ 1)(6x)

15x* — 60x> + 6x + 25



Example Let F(x) = 3x*> = 5)(x° = 5x + 1). Find F’(x).

Solution  Consider F as a product of two functions
F'(x) = Bx*=5)—(=5x+D+x —=5x+1)—(3x*—5)

= Bx*=50Bx* =5+ =5x+ 1)(6x)
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Alternative Method Expand

F(x) = «-----

= 3x =20 +3x>+25x-5

and then differentiate term by term.
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Question Differentiate the following functions.

(1) f(x) =(x*+5)"
(2) f(x)= Va2 +5

Remark

e For (1), can expand and then differentiate term by term (if you have patience).
e However, this doesn’t work for (2).

e Note that both functions are in the form

x> (X2 +5)
e Can be considered as composition of two functions
x> (X2 +5) - (X2 +5)

e In Chapter 9, will discuss the chain rule.
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Higher-Order Derivatives

e Let f be a “nice” function.
The derivative of f (denoted by f’) is also a function.

o |f we differentiate f’, the resulting function is called the second derivative of
f, denoted by 1.

e Repeat this process, get the third derivative, the fourth derivative, etc.

These are called higher-order derivatives.
Example f(x) = x*

fl(x) = —x* = 4x°

f(x) = —4x = 12x°
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Solution  Rewrite f(x) = x> — x~ 1.
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Example Let f(x) = . Find f'(x), f”(x) and f""(x).

X

Solution  Rewrite f(x) = x> — x~ 1.

d

Differentiating ff(x) = d—(x2 - x7h
X
= 2x—(—1)x7?
= 2x+ x2
d )
f7(x) = —Q2x+x77)
dx

= 24 (-2)x2 = 2-2x73

X)) = i(2—296_3)
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= 2-(=3)x* = 6x7*
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Example Let f(x) = .

Solution  Rewrite f(x) = x> — x~ 1.

Differentiating f(x)

£

f///(x)

Exercise Guess a formula for 1 (x).

~! Find (%), f”(x) and f”(x).

1

d
a(x2 . x—l)

2x — (=1)x7?
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d
a(2x + x72%)

24+ (=2)x3 = 2-2x73
d

—(2-2x73

dx( x77)

—2.(=3)x~* = 6x7*

Involves n!, see supplementary notes
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Geometric meaning y = f(x) represents a curve in the xy-plane:
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o 2 is slope
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e —2 = 4 is rate of change of slope (convexity)
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Physical meaning When x is time and y is displacement
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Example Problem 1in Chapter3, s=1¢>, velocityatr=2?
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Example Consider the curve given by
y=x>=2x>+3x-7

Find an equation for the line tangent to the curve at the point A = (2, —-1).

10
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Solution d)yc _ a(xs _ 22 +3x—7)

= 3x2-2-2x+3-1-0
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slopeatA = il
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-10

= 3(22)-4(2) +3
= 7

Equation for tangent lineatA y—(—-1) =7(x - 2)
Tx—y—-15=0 general linear form
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Example Find the vertex of the parabola y = —x* — 2x + 3.

Solution Slope at vertex is 0

d d
2o —(=x* - 2x +3)
dx

dx
= 2x—-2-1+0

= —2x-2
d
Solving 2 0, -2x-2 = 0
dx
x = -1 x-coordinate of vertex
y-coordinate of vertex = —x*—-2x+3|
- 4

The vertex is (—1,4)



