## Rule 3: (Power Rule)

Rule 3: (Power Rule) 
$$\frac{\mathrm{d}}{\mathrm{d}x}x^r =$$

$$\frac{\mathrm{d}}{\mathrm{d}x}x^r =$$

Rule 3: (Power Rule) 
$$\frac{\mathrm{d}}{\mathrm{d}x}x^r = rx^{r-1}$$

Rule 3: (Power Rule) 
$$\frac{\mathrm{d}}{\mathrm{d}x}x^r = rx^{r-1}$$

**Proof** (for the case where r = n is a positive integer)

Rule 3: (Power Rule) 
$$\frac{\mathrm{d}}{\mathrm{d}x}x^r = rx^{r-1}$$

**Proof** (for the case where r = n is a positive integer)

**Formula** for expanding  $(x + h)^n$ 

$$(x+h)^2 = x^2 + 2xh + h^2$$

Rule 3: (Power Rule) 
$$\frac{\mathrm{d}}{\mathrm{d}x}x^r = rx^{r-1}$$

**Proof** (for the case where r = n is a positive integer)

**Formula** for expanding  $(x + h)^n$ 

$$(x+h)^2 = x^2 + 2xh + h^2$$

$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$

Show Pascal triangle

Rule 3: (Power Rule) 
$$\frac{\mathrm{d}}{\mathrm{d}x}x^r = rx^{r-1}$$

**Proof** (for the case where r = n is a positive integer)

**Formula** for expanding  $(x + h)^n$ 

$$(x+h)^{2} = x^{2} + 2xh + h^{2}$$

$$(x+h)^{3} = x^{3} + 3x^{2}h + 3xh^{2} + h^{3}$$
Show Pascal triangle
$$\vdots$$

$$(x+h)^{n} = x^{n} + nx^{n-1}h + ()x^{n-2}h^{2} + \dots + ()xh^{n-1} + h^{n}$$

where missing numbers are constants *depending on n and the position* 

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^n + nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n\right) - x^n}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^n + nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n\right) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^n + nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n\right) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n}{h}$$

$$= \lim_{h \to 0} \left( nx^{n-1} + ()x^{n-2}h + \dots + h^{n-1} \right)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^n + nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n\right) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n}{h}$$

$$= \lim_{h \to 0} \left( nx^{n-1} + ()x^{n-2}h + \dots + h^{n-1} \right)$$

$$= nx^{n-1}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^n + nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n\right) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + ()x^{n-2}h^2 + \dots + ()xh^{n-1} + h^n}{h}$$

$$= \lim_{h \to 0} \left(nx^{n-1} + ()x^{n-2}h + \dots + h^{n-1}\right)$$

$$= nx^{n-1}$$

General case, use logarithmic differentiation (Chapter 8).

$$\frac{\mathrm{d}}{\mathrm{d}x} \big( f(x)g(x) \big) =$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

**Proof** Put F(x) = f(x)g(x).

$$\frac{\mathrm{d}}{\mathrm{d}x} \Big( f(x)g(x) \Big) = \frac{\mathrm{d}}{\mathrm{d}x} F(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

**Proof** Put F(x) = f(x)g(x).

$$\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}F(x)$$

$$= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

**Proof** Put F(x) = f(x)g(x).

$$\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}F(x)$$

$$= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}f(x)$$

**Proof** Put F(x) = f(x)g(x).

$$\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}F(x)$$

$$= \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

*Trick* – subtract and add f(x + h)g(x) in the numerator:

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{[f(x+h)g(x+h) - f(x+h)g(x)] + [f(x+h)g(x) - f(x)g(x)]}{h}$$

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{[f(x+h)g(x+h) - f(x+h)g(x)] + [f(x+h)g(x) - f(x)g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)]}{h}$$

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{[f(x+h)g(x+h) - f(x+h)g(x)] + [f(x+h)g(x) - f(x)g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)]}{h} + \lim_{h \to 0} \frac{g(x)[f(x+h) - f(x)]}{h}$$

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{[f(x+h)g(x+h) - f(x+h)g(x)] + [f(x+h)g(x) - f(x)g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)]}{h} + \lim_{h \to 0} \frac{g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \frac{[g(x+h) - g(x)]}{h} + \lim_{h \to 0} g(x) \cdot \lim_{h \to 0} \frac{[f(x+h) - f(x)]}{h}$$

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{[f(x+h)g(x+h) - f(x+h)g(x)] + [f(x+h)g(x) - f(x)g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)]}{h} + \lim_{h \to 0} \frac{g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \frac{[g(x+h) - g(x)]}{h} + \lim_{h \to 0} g(x) \cdot \lim_{h \to 0} \frac{[f(x+h) - f(x)]}{h}$$

$$= f(x)g'(x) + g(x)f'(x)$$

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{[f(x+h)g(x+h) - f(x+h)g(x)] + [f(x+h)g(x) - f(x)g(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)]}{h} + \lim_{h \to 0} \frac{g(x)[f(x+h) - f(x)]}{h}$$

$$= \lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \frac{[g(x+h) - g(x)]}{h} + \lim_{h \to 0} g(x) \cdot \lim_{h \to 0} \frac{[f(x+h) - f(x)]}{h}$$

$$= f(x)g'(x) + g(x)f'(x)$$

**Fact** If f is differentiable, then it is continuous.

$$F'(x) = (3x^2 - 5)\frac{\mathrm{d}}{\mathrm{d}x}(x^3 - 5x + 1) + (x^3 - 5x + 1)\frac{\mathrm{d}}{\mathrm{d}x}(3x^2 - 5)$$

$$F'(x) = (3x^2 - 5)\frac{d}{dx}(x^3 - 5x + 1) + (x^3 - 5x + 1)\frac{d}{dx}(3x^2 - 5)$$
$$= (3x^2 - 5)(3x^2 - 5) + (x^3 - 5x + 1)(6x)$$

$$F'(x) = (3x^2 - 5)\frac{d}{dx}(x^3 - 5x + 1) + (x^3 - 5x + 1)\frac{d}{dx}(3x^2 - 5)$$

$$= (3x^2 - 5)(3x^2 - 5) + (x^3 - 5x + 1)(6x)$$

$$\vdots$$

$$= 15x^4 - 60x^2 + 6x + 25$$

Solution Consider F as a product of two functions

$$F'(x) = (3x^2 - 5)\frac{d}{dx}(x^3 - 5x + 1) + (x^3 - 5x + 1)\frac{d}{dx}(3x^2 - 5)$$

$$= (3x^2 - 5)(3x^2 - 5) + (x^3 - 5x + 1)(6x)$$

$$\vdots$$

$$= 15x^4 - 60x^2 + 6x + 25$$

## Alternative Method Expand

$$F(x) = \cdots$$

$$= 3x^5 - 20x^3 + 3x^2 + 25x - 5$$

and then differentiate term by term.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{f(x)}{g(x)} \right] =$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} f(x) - f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)}{[g(x)]^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} f(x) - f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)}{[g(x)]^2}$$

**Proof** Similar to the proof of the product rule.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} f(x) - f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)}{[g(x)]^2}$$

**Proof** Similar to the proof of the product rule.

Alternative notation 
$$D\left(\frac{f}{g}\right) = \frac{g \cdot Df - f \cdot Dg}{g^2}$$

**Example** Find 
$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{\sqrt{x}} \right)$$
.

Method 1

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot \frac{\mathrm{d}}{\mathrm{d}x} (2x^2 - 3) - (2x^2 - 3) \cdot \frac{\mathrm{d}}{\mathrm{d}x} x^{\frac{1}{2}}}{(\sqrt{x})^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot \frac{\mathrm{d}}{\mathrm{d}x} (2x^2 - 3) - (2x^2 - 3) \cdot \frac{\mathrm{d}}{\mathrm{d}x} x^{\frac{1}{2}}}{(\sqrt{x})^2}$$

$$= \sqrt{x} \cdot 4x$$

**Example** Find  $\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right)$ .

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot \frac{d}{dx} (2x^2 - 3) - (2x^2 - 3) \cdot \frac{d}{dx} x^{\frac{1}{2}}}{(\sqrt{x})^2}$$

$$= \frac{\sqrt{x} \cdot 4x - (2x^2 - 3) \cdot \frac{1}{2} x^{-\frac{1}{2}}}{x}$$

**Example** Find 
$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{\sqrt{x}} \right)$$
.

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot \frac{d}{dx} (2x^2 - 3) - (2x^2 - 3) \cdot \frac{d}{dx} x^{\frac{1}{2}}}{(\sqrt{x})^2}$$

$$= \frac{\sqrt{x} \cdot 4x - (2x^2 - 3) \cdot \frac{1}{2} x^{-\frac{1}{2}}}{x}$$

$$= \frac{4x^{\frac{3}{2}} - x^{\frac{3}{2}} + \frac{3}{2} x^{-\frac{1}{2}}}{x}$$

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot \frac{d}{dx} (2x^2 - 3) - (2x^2 - 3) \cdot \frac{d}{dx} x^{\frac{1}{2}}}{(\sqrt{x})^2}$$

$$= \frac{\sqrt{x} \cdot 4x - (2x^2 - 3) \cdot \frac{1}{2} x^{-\frac{1}{2}}}{x}$$

$$= \frac{4x^{\frac{3}{2}} - x^{\frac{3}{2}} + \frac{3}{2} x^{-\frac{1}{2}}}{x} = \frac{3x^{\frac{3}{2}} + \frac{3}{2} x^{-\frac{1}{2}}}{x}$$

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\sqrt{x} \cdot \frac{d}{dx} (2x^2 - 3) - (2x^2 - 3) \cdot \frac{d}{dx} x^{\frac{1}{2}}}{(\sqrt{x})^2}$$

$$= \frac{\sqrt{x} \cdot 4x - (2x^2 - 3) \cdot \frac{1}{2} x^{-\frac{1}{2}}}{x}$$

$$= \frac{4x^{\frac{3}{2}} - x^{\frac{3}{2}} + \frac{3}{2} x^{-\frac{1}{2}}}{x} = \frac{3x^{\frac{3}{2}} + \frac{3}{2} x^{-\frac{1}{2}}}{x}$$

$$= 3x^{\frac{1}{2}} + \frac{3}{2} x^{-\frac{3}{2}} = 3\sqrt{x} + \frac{3}{2x\sqrt{x}}$$

**Example** Find 
$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{\sqrt{x}} \right)$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{2x^2 - 3}{x^{\frac{1}{2}}} \right)$$

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{d}{dx} \left( \frac{2x^2 - 3}{x^{\frac{1}{2}}} \right) = \frac{d}{dx} \left[ (2x^2 - 3)x^{-\frac{1}{2}} \right]$$
$$= \frac{d}{dx} \left( 2x^{\frac{3}{2}} - 3x^{-\frac{1}{2}} \right)$$

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{d}{dx} \left( \frac{2x^2 - 3}{x^{\frac{1}{2}}} \right) = \frac{d}{dx} \left[ (2x^2 - 3)x^{-\frac{1}{2}} \right]$$

$$= \frac{d}{dx} \left( 2x^{\frac{3}{2}} - 3x^{-\frac{1}{2}} \right)$$

$$= 2 \cdot \frac{3}{2} x^{\frac{1}{2}}$$

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{d}{dx} \left( \frac{2x^2 - 3}{x^{\frac{1}{2}}} \right) = \frac{d}{dx} \left[ (2x^2 - 3)x^{-\frac{1}{2}} \right]$$

$$= \frac{d}{dx} \left( 2x^{\frac{3}{2}} - 3x^{-\frac{1}{2}} \right)$$

$$= 2 \cdot \frac{3}{2}x^{\frac{1}{2}} - 3 \cdot \left( -\frac{1}{2} \right)x^{-\frac{3}{2}}$$

$$\frac{d}{dx} \left( \frac{2x^2 - 3}{\sqrt{x}} \right) = \frac{d}{dx} \left( \frac{2x^2 - 3}{x^{\frac{1}{2}}} \right) = \frac{d}{dx} \left[ (2x^2 - 3)x^{-\frac{1}{2}} \right]$$

$$= \frac{d}{dx} \left( 2x^{\frac{3}{2}} - 3x^{-\frac{1}{2}} \right)$$

$$= 2 \cdot \frac{3}{2}x^{\frac{1}{2}} - 3 \cdot \left( -\frac{1}{2} \right)x^{-\frac{3}{2}}$$

$$= 3x^{\frac{1}{2}} + \frac{3}{2}x^{-\frac{3}{2}}$$

**Example** Let 
$$F(x) = \frac{x^2 + 3x - 4}{2x + 1}$$
. Find  $F'(x)$ .

**Example** Let 
$$F(x) = \frac{x^2 + 3x - 4}{2x + 1}$$
. Find  $F'(x)$ .

Solution By quotient rule:

$$F'(x) = \frac{(2x+1)\frac{\mathrm{d}}{\mathrm{d}x}(x^2+3x-4) - (x^2+3x-4)\frac{\mathrm{d}}{\mathrm{d}x}(2x+1)}{(2x+1)^2}$$

**Example** Let 
$$F(x) = \frac{x^2 + 3x - 4}{2x + 1}$$
. Find  $F'(x)$ .

Solution By quotient rule:

$$F'(x) = \frac{(2x+1)\frac{d}{dx}(x^2+3x-4) - (x^2+3x-4)\frac{d}{dx}(2x+1)}{(2x+1)^2}$$
$$= \frac{(2x+1)(2x+3-0) - (x^2+3x-4)(2+0)}{(2x+1)^2}$$

**Example** Let 
$$F(x) = \frac{x^2 + 3x - 4}{2x + 1}$$
. Find  $F'(x)$ .

Solution By quotient rule:

$$F'(x) = \frac{(2x+1)\frac{d}{dx}(x^2+3x-4) - (x^2+3x-4)\frac{d}{dx}(2x+1)}{(2x+1)^2}$$

$$= \frac{(2x+1)(2x+3-0) - (x^2+3x-4)(2+0)}{(2x+1)^2}$$

$$\vdots$$

$$= \frac{2x^2+2x+11}{(2x+1)^2}$$

- In power rule:
  - $\diamond$  put r = 1,

• In power rule:

$$\Rightarrow \text{ put } r = 1, \text{ get } \frac{\mathrm{d}}{\mathrm{d}x}x^1 = 1x^0,$$

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

 $\diamond$  put r = 0,

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^1 = 1x^0$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}x = 1$  (rule 2)

$$\Rightarrow \text{ put } r = 0, \text{ get } \frac{\mathrm{d}}{\mathrm{d}x}x^0 = 0x^{-1},$$

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^1 = 1x^0$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^0 = 0x^{-1}$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}1 = 0$  (special case of rule 1)

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^0 = 0x^{-1}$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{d}{dx}x^0 = 0x^{-1}$ , that is,  $\frac{d}{dx}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

In the rules for differentiation, x is a dummy variable.

$$\diamond$$
 Eg. Power rule:  $\frac{\mathrm{d}}{\mathrm{d}t}t^r = rt^{r-1}$ 

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^0 = 0x^{-1}$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

In the rules for differentiation, x is a dummy variable.

$$\diamond$$
 Eg. Power rule:  $\frac{\mathrm{d}}{\mathrm{d}t}t^r = rt^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}u}u^r = ru^{r-1}$ 

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{d}{dx}x^0 = 0x^{-1}$ , that is,  $\frac{d}{dx}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

In the rules for differentiation, x is a dummy variable.

$$\diamond$$
 Eg. Power rule:  $\frac{\mathrm{d}}{\mathrm{d}t}t^r = rt^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}u}u^r = ru^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}y}y^r = ry^{r-1}$ 

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{d}{dx}x^0 = 0x^{-1}$ , that is,  $\frac{d}{dx}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

In the rules for differentiation, x is a dummy variable.

$$\Rightarrow \text{ Eg. Power rule:} \qquad \frac{\mathrm{d}}{\mathrm{d}t} \, t^r = r \, t^{r-1} \qquad \frac{\mathrm{d}}{\mathrm{d}u} \, u^r = r \, u^{r-1} \qquad \frac{\mathrm{d}}{\mathrm{d}y} \, y^r = r \, y^{r-1}$$

Warning  $\frac{\mathrm{d}}{\mathrm{d}x}u^r \neq r u^{r-1}$ 

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^0 = 0x^{-1}$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

In the rules for differentiation, x is a dummy variable.

$$\Rightarrow$$
 Eg. Power rule:  $\frac{\mathrm{d}}{\mathrm{d}t}t^r = rt^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}u}u^r = ru^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}y}y^r = ry^{r-1}$  Warning  $\frac{\mathrm{d}}{\mathrm{d}x}u^r \neq ru^{r-1}$ 

Alternative form using 'notation:

♦ Product rule: (fg)' = gf' + fg'

• In power rule:

$$\Rightarrow$$
 put  $r = 1$ , get  $\frac{d}{dx}x^1 = 1x^0$ , that is,  $\frac{d}{dx}x = 1$  (rule 2)

$$\Rightarrow$$
 put  $r = 0$ , get  $\frac{\mathrm{d}}{\mathrm{d}x}x^0 = 0x^{-1}$ , that is,  $\frac{\mathrm{d}}{\mathrm{d}x}1 = 0$  (special case of rule 1)

However, there are small differences (see lecture notes).

In the rules for differentiation, x is a dummy variable.

$$\Rightarrow$$
 Eg. Power rule:  $\frac{\mathrm{d}}{\mathrm{d}t}t^r = rt^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}u}u^r = ru^{r-1}$   $\frac{\mathrm{d}}{\mathrm{d}y}y^r = ry^{r-1}$  Warning  $\frac{\mathrm{d}}{\mathrm{d}x}u^r \neq ru^{r-1}$ 

Alternative form using ' notation:

$$\diamond$$
 Product rule:  $(fg)' = gf' + fg'$ 

• Quotient rule: 
$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$
 etc.

(1) 
$$f(x) = (x^2 + 5)^{30}$$

(1) 
$$f(x) = (x^2 + 5)^{30}$$
  
(2)  $f(x) = \sqrt{x^2 + 5}$ 

(1) 
$$f(x) = (x^2 + 5)^{30}$$

(2) 
$$f(x) = \sqrt{x^2 + 5}$$

## Remark

• For (1), can expand and then differentiate term by term (if you have patience).

(1) 
$$f(x) = (x^2 + 5)^{30}$$

(2) 
$$f(x) = \sqrt{x^2 + 5}$$

## Remark

- For (1), can expand and then differentiate term by term (if you have patience).
- However, this doesn't work for (2).

(1) 
$$f(x) = (x^2 + 5)^{30}$$

(2) 
$$f(x) = \sqrt{x^2 + 5}$$

#### Remark

- For (1), can expand and then differentiate term by term (if you have patience).
- However, this doesn't work for (2).
- Note that both functions are in the form

$$x \mapsto (x^2 + 5)^r$$

(1) 
$$f(x) = (x^2 + 5)^{30}$$

(2) 
$$f(x) = \sqrt{x^2 + 5}$$

#### Remark

- For (1), can expand and then differentiate term by term (if you have patience).
- However, this doesn't work for (2).
- Note that both functions are in the form

$$x \mapsto (x^2 + 5)^r$$

Can be considered as composition of two functions

$$x \mapsto (x^2 + 5) \mapsto (x^2 + 5)^r$$

(1) 
$$f(x) = (x^2 + 5)^{30}$$

(2) 
$$f(x) = \sqrt{x^2 + 5}$$

#### Remark

- For (1), can expand and then differentiate term by term (if you have patience).
- However, this doesn't work for (2).
- Note that both functions are in the form

$$x \mapsto (x^2 + 5)^r$$

Can be considered as composition of two functions

$$x \mapsto (x^2 + 5) \mapsto (x^2 + 5)^r$$

In Chapter 9, will discuss the chain rule.

• Let *f* be a "*nice*" function.

• Let *f* be a "nice" function.

**Example** 
$$f(x) = x^4$$

• Let *f* be a "nice" function.

The derivative of f (denoted by f') is also a function.

**Example** 
$$f(x) = x^4$$

Let f be a "nice" function.

The derivative of f (denoted by f') is also a function.

**Example** 
$$f(x) = x^4$$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x}x^4 = 4x^3$$

Let f be a "nice" function.

The derivative of f (denoted by f') is also a function.

• If we differentiate f', the resulting function is called the *second derivative* of f, denoted by f''.

**Example** 
$$f(x) = x^4$$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} x^4 = 4x^3$$

Let f be a "nice" function.

The derivative of f (denoted by f') is also a function.

• If we differentiate f', the resulting function is called the *second derivative* of f, denoted by f''.

#### **Example** $f(x) = x^4$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} x^4 = 4x^3$$

$$f''(x) = \frac{d}{dx} 4x^3 = 12x^2$$

Let f be a "nice" function.

The derivative of f (denoted by f') is also a function.

- If we differentiate f', the resulting function is called the *second derivative* of f, denoted by f''.
- Repeat this process, get the third derivative,

### **Example** $f(x) = x^4$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} x^4 = 4x^3$$

$$f''(x) = \frac{d}{dx} 4x^3 = 12x^2$$

- Let f be a "nice" function.
  - The derivative of f (denoted by f') is also a function.
- If we differentiate f', the resulting function is called the *second derivative* of f, denoted by f''.
- Repeat this process, get the third derivative, the fourth derivative, etc.

#### **Example** $f(x) = x^4$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} x^4 = 4x^3$$

$$f''(x) = \frac{d}{dx} 4x^3 = 12x^2$$

Let f be a "nice" function.

The derivative of f (denoted by f') is also a function.

- If we differentiate f', the resulting function is called the *second derivative* of f, denoted by f''.
- Repeat this process, get the third derivative, the fourth derivative, etc.

These are called *higher-order derivatives*.

**Example** 
$$f(x) = x^4$$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} x^4 = 4x^3$$

$$f''(x) = \frac{d}{dx} 4x^3 = 12x^2$$

• Put 
$$y = f(x)$$
,  $y'' = f''(x) = \frac{d}{dx} \left( \frac{d}{dx} f(x) \right)$ 

• Put 
$$y = f(x)$$
,  $y'' = f''(x) = \frac{d}{dx} \left( \frac{d}{dx} f(x) \right)$ 
$$= \frac{d}{dx} \left( \frac{d}{dx} y \right)$$

• Put 
$$y = f(x)$$
,  $y'' = f''(x) = \frac{d}{dx} \left( \frac{d}{dx} f(x) \right)$ 
$$= \frac{d}{dx} \left( \frac{d}{dx} y \right) = \left( \frac{d}{dx} \right)^2 y$$

• Put 
$$y = f(x)$$
,  $y'' = f''(x) = \frac{d}{dx} \left( \frac{d}{dx} f(x) \right)$ 

$$= \frac{d}{dx} \left( \frac{d}{dx} y \right) = \left( \frac{d}{dx} \right)^2 y$$

$$= \frac{d^2 y}{dx^2} \text{ or } D^2 y$$

• Put 
$$y = f(x)$$
,  $y'' = f''(x) = \frac{d}{dx} \left( \frac{d}{dx} f(x) \right)$ 

$$= \frac{d}{dx} \left( \frac{d}{dx} y \right) = \left( \frac{d}{dx} \right)^2 y$$

$$= \frac{d^2 y}{dx^2} \text{ or } D^2 y$$

Similarly, for the higher-order derivatives, we have

$$y''' = f'''(x) = \frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$$

• Put 
$$y = f(x)$$
,  $y'' = f''(x) = \frac{d}{dx} \left( \frac{d}{dx} f(x) \right)$ 

$$= \frac{d}{dx} \left( \frac{d}{dx} y \right) = \left( \frac{d}{dx} \right)^2 y$$

$$= \frac{d^2 y}{dx^2} \text{ or } D^2 y$$

• Similarly, for the higher-order derivatives, we have

$$y''' = f'''(x) = \frac{d^3y}{dx^3}$$
  $y^{(n)} = f^{(n)}(x) = \frac{d^ny}{dx^n}$ 

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$
$$= 15x^2 - 4x + 6$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$= 15x^2 - 4x + 6$$

$$f''(x) = \frac{d}{dx}(15x^2 - 4x + 6)$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$= 15x^2 - 4x + 6$$

$$f''(x) = \frac{d}{dx}(15x^2 - 4x + 6)$$

$$= 30x - 4$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$= 15x^2 - 4x + 6$$

$$f''(x) = \frac{d}{dx}(15x^2 - 4x + 6)$$

$$= 30x - 4$$

$$f'''(x) = \frac{d}{dx}(30x - 4)$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$= 15x^2 - 4x + 6$$

$$f''(x) = \frac{d}{dx}(15x^2 - 4x + 6)$$

$$= 30x - 4$$

$$f'''(x) = \frac{d}{dx}(30x - 4)$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$= 15x^2 - 4x + 6$$

$$f''(x) = \frac{d}{dx}(15x^2 - 4x + 6)$$

$$= 30x - 4$$

$$f'''(x) = \frac{d}{dx}(30x - 4)$$

$$= 30$$

$$f^{(4)}(x) = 0$$

$$f'(x) = \frac{d}{dx}(5x^3 - 2x^2 + 6x + 1)$$

$$= 15x^2 - 4x + 6$$

$$f''(x) = \frac{d}{dx}(15x^2 - 4x + 6)$$

$$= 30x - 4$$

$$f'''(x) = \frac{d}{dx}(30x - 4)$$

$$= 30$$

$$f^{(4)}(x) = 0$$
for  $n \ge 4$ 

Solution Rewrite  $f(x) = x^2 - x^{-1}$ .

Differentiating  $f'(x) = \frac{d}{dx}(x^2 - x^{-1})$ 

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
$$= 2x - (-1)x^{-2}$$

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
$$= 2x - (-1)x^{-2}$$
$$= 2x + x^{-2}$$

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
$$= 2x - (-1)x^{-2}$$
$$= 2x + x^{-2}$$
$$f''(x) = \frac{d}{dx}(2x + x^{-2})$$

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
  
 $= 2x - (-1)x^{-2}$   
 $= 2x + x^{-2}$   
 $f''(x) = \frac{d}{dx}(2x + x^{-2})$   
 $= 2 + (-2)x^{-3} = 2 - 2x^{-3}$ 

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
  
 $= 2x - (-1)x^{-2}$   
 $= 2x + x^{-2}$   
 $f'''(x) = \frac{d}{dx}(2x + x^{-2})$   
 $= 2 + (-2)x^{-3} = 2 - 2x^{-3}$   
 $f''''(x) = \frac{d}{dx}(2 - 2x^{-3})$ 

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
  
 $= 2x - (-1)x^{-2}$   
 $= 2x + x^{-2}$   
 $f''(x) = \frac{d}{dx}(2x + x^{-2})$   
 $= 2 + (-2)x^{-3} = 2 - 2x^{-3}$   
 $f'''(x) = \frac{d}{dx}(2 - 2x^{-3})$   
 $= -2 \cdot (-3)x^{-4} = 6x^{-4}$ 

Solution Rewrite  $f(x) = x^2 - x^{-1}$ .

Differentiating 
$$f'(x) = \frac{d}{dx}(x^2 - x^{-1})$$
  
 $= 2x - (-1)x^{-2}$   
 $= 2x + x^{-2}$   
 $f''(x) = \frac{d}{dx}(2x + x^{-2})$   
 $= 2 + (-2)x^{-3} = 2 - 2x^{-3}$ 

$$f'''(x) = \frac{d}{dx}(2 - 2x^{-3})$$
$$= -2 \cdot (-3)x^{-4} = 6x^{-4}$$

**Exercise** Guess a formula for  $f^{(n)}(x)$ . Involves n!, see supplementary notes

Geometric meaning

Physical meaning

Geometric meaning y = f(x) represents a curve in the xy-plane:

• 
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
 is slope



Physical meaning

Geometric meaning y = f(x) represents a curve in the xy-plane:

- $\frac{\mathrm{d}y}{\mathrm{d}x}$  is slope
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of slope (convexity)

Physical meaning

Geometric meaning y = f(x) represents a curve in the xy-plane:

- $\frac{\mathrm{d}y}{\mathrm{d}x}$  is slope
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

•  $\frac{dy}{dx}$  is velocity

Geometric meaning y = f(x) represents a curve in the xy-plane:

- $\frac{\mathrm{d}y}{\mathrm{d}x}$  is slope
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

•  $\frac{dy}{dx}$  is velocity

**Example** Problem 1 in Chapter 3,  $s = t^2$ , velocity at t = 2?

Geometric meaning y = f(x) represents a curve in the xy-plane:

- $\frac{\mathrm{d}y}{\mathrm{d}x}$  is slope
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

•  $\frac{\mathrm{d}y}{\mathrm{d}x}$  is velocity

**Example** Problem 1 in Chapter 3,  $s = t^2$ , velocity at t = 2?

$$s'(t) = \frac{\mathrm{d}}{\mathrm{d}t}t^2 = 2t, \qquad \therefore \ s'(2) = 4$$

Geometric meaning y = f(x) represents a curve in the xy-plane:

- $\frac{\mathrm{d}y}{\mathrm{d}x}$  is slope
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

•  $\frac{dy}{dx}$  is velocity

**Example** Problem 1 in Chapter 3,  $s = t^2$ , velocity at t = 2?

$$s'(t) = \frac{\mathrm{d}}{\mathrm{d}t}t^2 = 2t, \qquad \therefore \ s'(2) = 4$$

•  $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of velocity with respect to time,

Geometric meaning y = f(x) represents a curve in the xy-plane:

- $\frac{\mathrm{d}y}{\mathrm{d}x}$  is slope
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of slope (convexity)

Physical meaning When x is time and y is displacement

•  $\frac{dy}{dx}$  is velocity

**Example** Problem 1 in Chapter 3,  $s = t^2$ , velocity at t = 2?

$$s'(t) = \frac{\mathrm{d}}{\mathrm{d}t}t^2 = 2t, \qquad \therefore \ s'(2) = 4$$

•  $\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$  is rate of change of velocity with respect to time, that is, *acceleration* 

$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

Solution

$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

Solution



$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(x^3 - 2x^2 + 3x - 7)$$



$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$
$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$



$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

Solution

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$

$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$

$$= 3x^2 - 4x + 3$$



$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$

$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$

$$= 3x^2 - 4x + 3$$
slope at  $A = \frac{dy}{dx}\Big|_{x=2}$ 



$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

Solution

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$

$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$

$$= 3x^2 - 4x + 3$$
slope at  $A = \frac{dy}{dx}\Big|_{x=2}$ 





$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$

$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$

$$= 3x^2 - 4x + 3$$

slope at 
$$A = \frac{dy}{dx}\Big|_{x=2}$$

$$= 3(2^2) - 4(2) + 3$$

$$= 7$$



$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$

$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$

$$= 3x^2 - 4x + 3$$

slope at 
$$A = \frac{dy}{dx}\Big|_{x=2}$$

$$= 3(2^2) - 4(2) + 3$$

$$= 7$$



Equation for tangent line at A y - (-1) = 7(x - 2)

$$y = x^3 - 2x^2 + 3x - 7$$

Find an equation for the line tangent to the curve at the point A = (2, -1).

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 2x^2 + 3x - 7)$$

$$= 3x^2 - 2 \cdot 2x + 3 \cdot 1 - 0$$

$$= 3x^2 - 4x + 3$$

slope at 
$$A = \frac{dy}{dx}\Big|_{x=2}$$

$$= 3(2^2) - 4(2) + 3$$

$$= 7$$



Equation for tangent line at A y - (-1) = 7(x - 2)

$$7x - y - 15 = 0$$

7x - y - 15 = 0 general linear form

Solution



$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(-x^2 - 2x + 3)$$



$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$



$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$
$$= -2x - 2$$



$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$
$$= -2x - 2$$



Solving 
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
,  $-2x - 2 = 0$ 

$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$
$$= -2x - 2$$



Solving 
$$\frac{dy}{dx} = 0$$
,  $-2x - 2 = 0$   
 $x = -1$  x-coordinate of vertex

$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$
$$= -2x - 2$$



Solving 
$$\frac{dy}{dx} = 0$$
,  $-2x - 2 = 0$   
 $x = -1$  x-coordinate of vertex

y-coordinate of vertex = 
$$-x^2 - 2x + 3\Big|_{x=-1}$$

$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$
$$= -2x - 2$$



Solving 
$$\frac{dy}{dx} = 0$$
,  $-2x - 2 = 0$   
 $x = -1$  x-coordinate of vertex

y-coordinate of vertex = 
$$-x^2 - 2x + 3\Big|_{x=-1}$$
  
= 4

## Solution Slope at vertex is 0

$$\frac{dy}{dx} = \frac{d}{dx}(-x^2 - 2x + 3)$$
$$= -2x - 2 \cdot 1 + 0$$
$$= -2x - 2$$



Solving 
$$\frac{dy}{dx} = 0$$
,  $-2x - 2 = 0$   
 $x = -1$  x-coordinate of vertex

y-coordinate of vertex = 
$$-x^2 - 2x + 3\Big|_{x=-1}$$
  
= 4

The vertex is (-1, 4)